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a  b  s  t  r  a  c  t

In this study,  we propose  a hybrid  optimization  method,  consisting  of an evolutionary  algorithm  (EA)
and  a branch-and-bound  method  (BnB)  for solving  the capacitated  single  allocation  hub  location  problem
(CSAHLP).  The  EA  is  designed  to explore  the  solution  space  and  to select  promising  configurations  of hubs
(the location  part  of  the  problem).  Hub configurations  produced  by  the  EA  are  further  passed  to  the  BnB
search,  which  works  with  fixed  hubs  and allocates  the non-hub  nodes  to located  hubs  (the  allocation
part  of  the  problem).  The  BnB  method  is  implemented  using  parallelization  techniques,  which  results  in
short  running  times.  The  proposed  hybrid  algorithm,  named  EA-BnB,  has  been  tested  on  the  standard
Australia  Post  (AP) hub  data  sets  with  up  to  300  nodes.  The  results  demonstrate  the  superiority  of  our
hybrid  approach  over  existing  heuristic  approaches  from  the existing  literature.  The  EA-BnB  method  has
reached  all  the  known  optimal  solutions  for  AP  hub  data  set  and  found  new,  significantly  better,  solutions
on  three  AP  instances  with  100  and  200  nodes.  Furthermore,  the extreme  efficiency  of  the  implementation
of  this  hybrid  algorithm  resulted  in  short  running  times,  even  for the  largest  AP  test  instances.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Hub location problems arise from transportation and telecom-
munication networks when it is not desirable to directly transport
goods, passengers or data between origin–destination pairs, due to
extremely high transportation costs. As an alternative, a hub net-
work is used, where hubs act as collection, consolidation, transfer
and distribution points. The advantage of exploiting a hub net-
work are lower transportation costs between the hubs, which leads
to reductions of overall transportation costs in the network. Ori-
gin and destination nodes can be connected to one or more hubs,
depending on whether the design constraints allow single or mul-
tiple allocation. It is usually assumed that the underlying hub
network is fully connected, while non-hub nodes are not neces-
sarily connected to each other. Furthermore, all origin–destination
flow has to be routed via at least one hub.

Hub location problems usually involve two decision making
tasks: choosing which hubs to establish from the given set of
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potential hubs and the allocation of non-hub nodes to established
hubs. Various constraints and objective functions may  be assumed.
The most common hub location problems are those with the center
and median objectives. In the hub median problems, the objective
is to minimize the total transportation costs in the network, which
is important in transportation systems, such as air cargo and pas-
senger transport, postal and other delivery systems, etc. However,
in the case of excessively large or expensive origin–destination
distances, the objective of the median type may  lead to unsatis-
factory results. In these cases, hub center problems represent a
better model, minimizing the maximum distance or cost between
origin–destination pairs. Hub center problems are mostly applied
in designing fast delivery systems (DHL, Fedex, LightSpeed Express,
etc.), which are used for urgent deliveries and transportation of per-
ishable or time sensitive items. Various additional constraints may
be imposed, such as fixed number of hubs to be located, limited
capacities of both hub and non-hub nodes, capacity constraints on
links in the network, fixed costs for establishing hubs or hub net-
work, etc. A detailed review of hub location problems and their
applications may  be found in [3,6].

In this paper, we consider a variant of the hub location prob-
lem, in the literature known as the capacitated single allocation
hub location problem (CSAHLP). In this problem there is capacity
restriction on the incoming flow of each potential hub node. The
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number of hubs to be installed is not fixed in advance, but installing
a hub at some location assumes certain fixed costs. We want to
choose locations for installing hubs and to allocate each non-hub
node to exactly one, previously installed hub, in such a way that
the sum of transportation costs between origin–destination pairs
and the costs for establishing hubs is minimized. The CSAHLP is
an NP-hard optimization problem, since its uncapacitated variant
(USAHLP) is known to be NP-hard, even when the set of hubs is
fixed [18].

The CSAHLP was not so extensively studied in the literature,
compared to its uncapacitated version – the USAHLP. There is a
plethora of papers dealing with the uncapacitated single alloca-
tion hub location problem. Up to now several formulations of the
USAHLP were proposed in the literature [2,14,18], and several exact
and heuristic methods were developed for solving the USAHLP,
see [1,2,21,25]. We  refer to some recent studies dealing with the
USAHLP, see [7,13,16,20].

In the literature one can find several papers that consider
the CSAHLP and its appropriate solution methods. Campbel [5]
presents the first mixed integer linear programming (MILP) for-
mulation for the problem. Ernst and Krishnamoorthy in [11]
extend the formulation of the uncapacitated version of the prob-
lem from [22] to the capacitated case. The authors in [11] present
another MILP formulation of the problem by involving an addi-
tional set of constraints. This formulation was later corrected
by Correia et al. in [9] by adding a missing constraint set. Two
heuristic algorithms for solving the CSAHLP are proposed in [11],
based on simulated annealing (SA) and random descent (RDH)
approaches. The upper bounds obtained by the heuristics are
used in an LP-based branch- and bound method, which pro-
vides optimal solutions for small and medium size AP problem
instances with n ≤ 50 nodes. For realistic sized AP problems n =100,
200 that could not be solved exactly, the proposed RDH and SA
heuristics provided solutions in a reasonable amount of computer
time.

Contreras et al. [8] present a Lagrangian relaxation (LR)
enhanced with reduction tests, which exploits the structure of the
problem and decomposes it into smaller subproblems that can be
solved efficiently. The authors present optimal solutions obtained
by LR approach for small and medium size AP instances with n ≤ 50
nodes, and tight upper and lower bounds in the case of newly
generated instances of larger dimensions. A heuristic approach is
employed to obtain good quality feasible solutions for the tested
instances.

Stanimirović in [23] proposed a genetic algorithm (GA) approach
for solving the CSAHLP. The GA from [23] proved to be efficient on
small and medium size AP test instances with n ≤ 50 nodes and had
a similar performance on larger AP instances with n =100, 200 nodes
as the RDH and SA heuristics. In the study by Randall [19], four
variations of the ant colony metaheuristic (ACO) are proposed as
a solution method for the CSAHLP. The developed ACO approaches
use different learning mechanisms for determining the location of
hubs and the assignment of non-hub nodes to hubs. The authors
investigate the effects of the solution component assignment order,
and the form of local search heuristics through the set of compu-
tational experiments on small and medium size AP instances with
n ≤ 50 nodes.

A variant of the CSAHLP is studied in paper [15], where a capacity
on the flow that transverses each hub is assumed, and a branch-
and-cut algorithm is proposed for solving this problem. Costa et al.
[10] propose a bi-objective approach to the CSAHLP. Instead of
using capacity constraints to limit the amount of incoming flow
in hubs, the authors introduce a second objective function to the
model that tries to minimize the time to process the flow entering
the hubs. For an overview of the existing literature on the CSAHLP
and related problems, we refer the reader to [3].

2. Mathematical model

We use a revised formulation of the CSAHLP from [9], including
the missing cuts, the lack of which could lead to infeasible solutions,
as demonstrated by Correia et al. in [9]. A network I of n distinct
nodes is given, with a matrix Cij of transportation cost per unit flow
between any two nodes i and j from the network I. In general, this
matrix represents any abstract value corresponding to an ordered
pair of two  nodes. However, in practice, it usually depends on the
distance between i and j. Therefore, for a given node k we will label
a node l, l /= k as the nearest node to node k, if it has the lowest value
of transportation cost from the node k, i.e., Ckl = min

j,j /= k
Ckj .

The amount of flow from an origin i to destination j is given by
the flow matrix Wij. This matrix is not necessarily symmetric, and
Wii may  be greater than 0. The cost of establishing a hub is asso-
ciated with every node k and is given by a constant fk. Similarly,
the collection capacity of each potential hub k is given by Gk. All
flow from an origin i to a destination j has to be routed via some
hub nodes k and l, respectively, where k, l ∈ H and H ⊆ I is a set of
established hubs. Therefore, direct transportation between non hub
nodes is not allowed. The costs of collection (from origin to hub),
transfer (from hub to hub), and distribution (from hub to destina-
tion) are given by the parameters �,  ̨ and ı, respectively. Hence,
the total transportation cost (per unit flow) from an origin i to a
destination j, via hubs k and l, is equal to �Cik + ˛Ckl + ıClj. Since the
transfer between the hubs has lower cost compared to collection
and distribution, it is assumed that �, ı > ˛.

A binary decision variable Zij takes the value of 1 if node i is
allocated to a hub node j ∈ H, and 0 otherwise. Hubs are always
allocated to themselves, hence, if Zkk = 1 then and only then k is a
hub. Zkk = 1 ⇔ k ∈ H. No direct flow between non-hub nodes i and
j is allowed, so we  introduce continuous non-negative variables
Yi

kl
which represent the amount of flow originated from node i,

collected at hub k and distributed via hub l. The triangle-inequality
holds for the transportation costs between nodes, so the flow will
ever travel via at most two hubs. Finally, Oi and Dj represent the
amount of flow which departs from i ∈ I and the amount of flow
that is distributed to node j ∈ I, respectively, i.e., Oi =

∑
j∈IWij and

Dj =
∑

i∈IWij.
Using the notation given above, the CSAHLP is formulated as

follows [9]:

min
∑
i∈I

∑
k∈I

CikZik(�Oi + ıDi) +
∑
i∈I

∑
k∈I

∑
l∈I

˛CklY
i
kl +

∑
k∈I

fkZkk (1)

subject to:

∑
k∈I

Zik = 1 for everyi ∈ I (2)

Zik ≤ Zkk for every i, k ∈ I (3)

∑
l∈I

Y i
kl −

∑
l∈I

Y i
lk = OiZik −

∑
j∈I

WijZjk for every i, k ∈ I (4)

∑
i∈I

OiZik ≤ GkZkk for every k ∈ I (5)

∑
l∈I,l /= k

Y i
kl ≤ OiZik for every i, k ∈ I (6)

Yi
kl ≥ 0 every i, k, l ∈ I (7)

Zik ∈ {0, 1} every i, k ∈ I. (8)
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