
Please cite this article in press as: V. Rafe, et al., A meta-heuristic solution for automated refutation of complex software systems specified
through graph transformations, Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.032

ARTICLE IN PRESSG Model
ASOC 2922 1–14

Applied Soft Computing xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

A meta-heuristic solution for automated refutation of complex
software systems specified through graph transformations

Vahid Rafea,∗Q1 , Maryam Moradia, Rosa Yousefiana,b, Amin Nikanjamc

a Department of Computer Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
b Sama Technical and Vocational Training College, Islamic Azad University, Khomeinishahr Branch, Esfahan, Iran
c Faculty of Computer Engineering, K.N.Toosi University of Technology, Tehran, 1631714191, Iran

a r t i c l e i n f o

Article history:
Received 21 August 2014
Received in revised form 9 April 2015
Accepted 13 April 2015
Available online xxx

Keywords:
Model checking
Refutation
PSO
GSA
Graph transformation system
State space explosion

a b s t r a c t

One of the best approaches for verifying software systems (especially safety critical systems) is the model
checking in which all reachable states are generated from an initial state. All of these states are searched
for errors or desirable patterns. However, the drawback for many real and complex systems is the state
space explosion in which model checking cannot generate all the possible states. In this situation, design-
ers can use refutation to check refusing a property rather than proving it. In refutation, it is very important
to handle the state space for finding errors efficiently. In this paper, we propose an efficient solution to
implement refutation in complex systems modeled by graph transformation. Since meta-heuristic algo-
rithms are efficient solutions for searching in the problems with very large state spaces, we use them
to find errors (e.g., deadlocks) in systems which cannot be verified through existing model checking
approaches due to the state space explosion. To do so, we employ a Particle Swarm Optimization (PSO)
algorithm to consider only a subset of states (called population) in each step of the algorithm. To increase
the accuracy, we propose a hybrid algorithm using PSO and Gravitational Search Algorithm (GSA). The
proposed approach is implemented in GROOVE, a toolset for designing and model checking graph trans-
formation systems. The experiments show improved results in terms of accuracy, speed and memory
usage in comparison with other existing approaches.

© 2015 Published by Elsevier B.V.

1. Introduction
Q3

Nowadays, software development is a complex task due to the
size and complexity of the current system’s requirements. Hence,
errors and bugs are common challenges in the software devel-
opment. Using appropriate methods to find and solve errors is
therefore essential in every developing effort. Early detection of
errors may yield better results in terms of cost, marketing time and
correctness. Therefore, using model-based techniques which focus
on models prior to implementation is a great option and model
checking is one of the best methods for verifying software and
hardware systems [1]. Using model checking method requires spec-
ifying systems with a formal language at first. Then, a model checker

∗ Corresponding author. Tel.: +98 9183526780.Q2
E-mail addresses: v-rafe@araku.ac.ir, rafe@iust.ac.ir (V. Rafe),

m.65moradi@gmail.com (M. Moradi), Rosa8a81@yahoo.com (R. Yousefian),
nikanjam@kntu.ac.ir (A. Nikanjam).

generates all reachable states from an initial one and the generated
state space is searched to find errors or desirable patterns.

There exist different formal languages with specific capabil-
ities. Graph Transformation System (GTS) is a visual yet formal
modeling language which is used to specify different systems nat-
urally and succinctly [2]. GTS is a formalism which is not only
used for system specification and verification but also is widely
utilized in many software development activities such as model
transformation [3], designing architectural styles [4], refinement
[5], meta-modeling [6], refactoring [7], workflow modeling and
analysis [8] and software architecture performance analysis [9]. We
therefore considered GTS as a test bed for implementing our idea.
However, our approach is independent of the language and it is also
possible to consider other model checking languages and tools to
implement it.

Even using a proper formal language like GTS, there is a problem
for many real and complex systems called state space explosion in
which the model checker cannot generate all the states due to enor-
mous number of states. To resolve this problem, different classical
approaches, like symbolic verification [10], partial order reduction

http://dx.doi.org/10.1016/j.asoc.2015.04.032
1568-4946/© 2015 Published by Elsevier B.V.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

dx.doi.org/10.1016/j.asoc.2015.04.032
dx.doi.org/10.1016/j.asoc.2015.04.032
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:v-rafe@araku.ac.ir
mailto:rafe@iust.ac.ir
mailto:m.65moradi@gmail.com
mailto:Rosa8a81@yahoo.com
mailto:nikanjam@kntu.ac.ir
dx.doi.org/10.1016/j.asoc.2015.04.032

Please cite this article in press as: V. Rafe, et al., A meta-heuristic solution for automated refutation of complex software systems specified
through graph transformations, Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.032

ARTICLE IN PRESSG Model
ASOC 2922 1–14

2 V. Rafe et al. / Applied Soft Computing xxx (2015) xxx–xxx

[11], symmetry checking methods [12] and scenario-driven model
checking [13] have been developed. However, almost all of these
methods use an exhaustive search on the state space and they may
encounter the explosion of state space.

The experiments in recent years suggest that meta-heuristic
algorithms are more efficient in finding safety property violations
than classical algorithms in very large and complex systems [14].
Meta-heuristic and evolutionary algorithms such as Genetic Algo-
rithm (GA) and Ant Colony Optimization (ACO) have been used in
order to cope with the state space explosion problem.

This work is a prosecution of the work presented in [2] in
which a heuristic solution was introduced to cope with the state
space explosion problem using the GA. Although the GA is very
efficient in many optimization problems, especially when dealing
with large spaces, it suffers from the low speed of convergence
and lack of accuracy in the complex and large systems [14]. Hence,
our aim is to improve the previous work [2] by proposing a faster
yet more accurate algorithm. The PSO [35] which is a very sim-
ple algorithm with few parameters, is one of the most efficient
algorithms in artificial intelligence and computational applications.
Moreover, this algorithm has an improved convergence speed [15],
and can therefore be a suitable alternative. We utilize the PSO
algorithm to explore the state space using model checking pro-
cess. The main idea is to produce and explore only a part of the
state space. However, similar to many algorithms, PSO suffers from
trapping in the local optima which reduces the accuracy of search.
Therefore, to solve this problem, we propose a hybrid approach
using GSA which is an efficient local search algorithm to cope with
the local optima problem. Some researches show that hybrids of
PSO with other meta-heuristic or evolutionary algorithms provide
more accurate results when compared with the original PSO itself.
Additionally, we also examine different algorithms in our study:
Simulated Annealing (SA), cuckoo search and bat optimization. The
experimental results show that the hybrid version of PSO with GSA
produces more accurate results with a lower computational bur-
den in comparison with the mentioned algorithms. However, the
hybrid approach has a slower convergence speed than PSO, but its
accuracy is considerably enhanced. We use GROOVE [16,17], a tool
for modeling and verifying GTS specifications, to implement our
idea. As our approach considers only a part of the state space, it
cannot be used to prove a property. It can however be used for
software refutation, i.e. it can prove that errors exist by providing
a counter example.

This paper is organized as follows: Section 2 surveys the state
of the art. Section 3 briefly introduces the required background. In
Section 4, we present our proposed approach using the PSO algo-
rithm. We also introduce a hybrid algorithm in this section based
on PSO and GSA. In Section 5, the implementation strategy along
with the used parameters is presented. In Section 6, the experimen-
tal results on different case studies along with a discussion on the
observations are presented. Finally, Section 7 concludes the paper
and discusses future research.

2. Related works

There are different approaches to cope with the state space
explosion problem. In the classical approaches, authors try to
reduce the size of the state space [12] or memory usage [18] by
some methods such as compositional verification, partial order
reduction and symmetry reduction. Various algorithms are used
to reduce the memory space required for storing states in the
memory saving-based approaches. For example in [19], the authors
presented an approach based on the bounded model checking
method for GTS via SMT (Satisfiability Modulo Theories) solving.
For this purpose, the authors encoded the reachability problem of a

forbidden pattern in a GTS as a SMT formula. The property will
always be a (forbidden) graph and the aim is to check the reach-
ability of error states. In fact, these approaches do not use any
heuristics. Therefore, the problem still exists and from this point
of view, our approach is entirely different.

In [20], authors propose approaches with different heuristics
such as hamming distance and approximations of the set of states
which can lead to the violation of assertions and estimates the dis-
tance to error states. Using this approach reduces the number of
states required to find the bug. In [21], the explicit state model
checker HSF-SPIN is presented based on the model checker SPIN.
The A* algorithm is used and certain heuristics are defined to accel-
erate the search procedure for finding a specific failure situation.
Using this approach, counter examples are found faster and the size
of explored part of the state space is usually smaller in compar-
ison with the classical approaches. In another work, an approach
to formalize a framework for the application of heuristic search
is presented in order to analyze structural properties of systems
modeled by GTS [22]. Heuristic search is intended to reduce the
analytical effort and deliver shorter solutions and paths in GTS.
All of these heuristic approaches are exhaustive search methods.
Hence, although these methods help to find errors faster, the state
space explosion still exists.

Meta-heuristic techniques are classified as another class of
methods which are used to cope with the state space explosion
problem in model checking.

Strategies which are based on ACO algorithm, inspired by ant’s
behavior prefer shorter paths to longer ones in exploring paths
to find errors. So, these strategies require less memory to store
shorter paths with fewer states. Therefore, in researches based on
this method, model checking can respond with optimal memory
usage [23,24]. However, accuracy may be an issue. For example, in
[25], the authors propose the use of a new kind of ACO, ACOhg,
to refute safety properties. ACOhg (ACO for huge graphs) is the
improved version of the traditional ACO. In ACOhg, the length of the
paths traversed by ants in the construction phase is limited. Addi-
tionally, the ants start the path construction from different nodes
during the search. They also consider deadlock to check its vio-
lation. The authors compare ACOhg with the exact and exhaustive
search algorithms such as DFS, BFS and A*. The authors extend their
work to consider the liveness properties [26]. They use ACOhg to
find violations of liveness property. Even though we do not con-
sider liveness properties in this paper, however the accuracy of our
proposed PSO-GSA approach is considerably improved. Moreover,
the authors use a textual language, HSF-SPIN, to implement their
ideas.

In another work, using a reinforcement learning agent, the
authors propose an approach to optimize memory usage by provid-
ing a guided search for finding counter examples [27]. They utilize
the notion of fairness to propose a heuristic reward function. Addi-
tionally, they use probabilistic model checking concept to provide
a termination condition for agent’s search as well as to provide
an approximation measure for the correctness of the model. The
authors compare their approach with random model checking. This
approach is limited to LTL properties. Moreover, the results of this
approach are not accurate enough (due to the approximation used
for the correctness of the model). Also, the speed of this approach
is slower than the existing meta-heuristic approaches. This work
was implemented on a textual modeling formalism and a model
checker called Modere.

Chicano et al. [28] presented a comparison of five meta-heuristic
algorithms including SA, ACO, PSO and two variants of GA to solve
the problem of finding deadlocks in the concurrent Java programs.
Moreover, the authors have used five other classical search algo-
rithms to compare and analyze the results of algorithms. The
reported results show that meta-heuristic algorithms are more

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

dx.doi.org/10.1016/j.asoc.2015.04.032

Download English Version:

https://daneshyari.com/en/article/6905187

Download Persian Version:

https://daneshyari.com/article/6905187

Daneshyari.com

https://daneshyari.com/en/article/6905187
https://daneshyari.com/article/6905187
https://daneshyari.com

