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a  b  s  t r  a  c  t

An information  granule  has  to  be translated  into  significant  frameworks  of  granular  computing  to  realize
interpretability–accuracy  tradeoff.  These  two  objectives  are in  conflict  and  constitute  an  open  problem.
A  new  operational  framework  to  form  the evolving  information  granule  (EIG)  is developed  in  this paper,
which  ensures  a  compromise  between  interpretability  and  reasonable  accuracy.  The  evolving  information
granule  is initiated  with  the first  information  granule  by translating  the knowledge  of  the  entire  output
domain.  The  initial  information  granule  is considered  an  underfitting  state  with  a  high  approximation
error.  Then,  the  EIG  starts  evolving  in the information  granule  by  partitioning  the output  domain  and
uses  a  dynamic  constraint  to  maintain  semantic  interpretability  in  the  output-contexts.  The  important
criterion  in  the  EIG  is to  determine  the  prominent  distinction  (output-context)  in  the  output  domain  and
realize  the distinct  information  granule  that depicts  the  semantics  at the  fuzzy  partition  level. The  EIG
tends  to  evolve  toward  the  lower  error  region  and  realizes  the  effective  rulebase  by  avoiding  overfitting.
The  outcome  on  the  synthetic  and  real-world  data  using  the  EIG  shows  the effectiveness  of  the  proposed
system,  which  outperforms  state-of-the  art  methods.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Information granules are presented as a certain conceptual
framework of basic entities [1]. A level of abstraction that is con-
ceived by global knowledge implies interpretability and hence,
information granules. Granular computing, which is a unified con-
ceptual and computing framework by the information granules,
exhibits the descriptive and functional representation of the global
concept [2,3].

Conditional or context-based fuzzy granular model was pro-
posed by Pedrycz [3–6], in which conditional fuzzy C-means was
considered [6]. The main objective was to define the output context
partition and then cluster the corresponding inputs. The num-
ber of contexts and clusters per context are predefined and fixed
[6]; hence, a computational model of the fuzzy system is manu-
ally designed by human experts [7,8]. In addition, the number of
output-context and its corresponding input clusters are based on
the distinct nature of the data and considered locally distributed.
The result is often highly prejudiced and uncertain because prior
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knowledge of humans to design the fuzzy model is limited. With-
out considering the input space, the partition on the output domain
may  cause underfitting or overfitting phenomena that could lead
to inaccurate performance. The input space for avoiding the imbal-
ance partition of the output domain needs to be considered when
partitioning the output domain because data are unevenly dis-
tributed in the input space. This imbalance partition of the output
domain maybe referred to as overfitting condition.

Error-reducing evolving methods are described in the simplified
structure evolving method (SSEM) [9] and evolving-construction
scheme for fuzzy system (ECSFS) [10]. In both studies, the struc-
ture of the fuzzy rulebase system evolved and errors to fit the
changes were reduced within the given system. These evolving
processes continued to achieve the desired threshold accuracy. In
addition, extremum and inflexion points were computed by using
least square method (LSM) to obtain the best accuracy. Learning
methods employed in [9,10] are based on global and localized learn-
ing for the rule consequent and the rule antecedent parameters,
respectively. Without considering the antecedent part, the lack
of localized learning in the consequent part may  cause an imbal-
anced partition of the output domain. Self-adaptive fuzzy inference
network (SaFIN), self-constructing neural fuzzy inference network
(SONFIN), and evolving neural-fuzzy semantic memory (eFSM)
were proposed by Tung et al. [11], Juang and Lin [7], and Tung
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Table  1
Summary of related work to assess the interpretability–accuracy tradeoff of fuzzy rule base.

Authors Refs. Year Type NR Acc. CM CONST. CBC O/U Condition

Pedrycz and Kwak [6] 2006 REG.
√ √

FCM
√

Liu  et al. [14] 2007 REG.
√ √

HL & SM
Pulkkinen and Koivisto [13] 2010 REG.

√ √
GFS

√
Mencar et al. [8,15] 2011 CLAS.

√ √
FCM

Tung et al. [11] 2011 CLAS. and REG.
√ √

SM
√

Tung and Quek [12] 2012 REG.
√ √

SM
√

Wang et al. [9,10] 2010, 2013 REG.
√ √

LSM
√ √ √

Solis  and Panoutsos [20] 2013 REG.
√ √

DS UE
Sanchez et al. [16,17,19] 2013, 2013, 2014 CLAS. and REG.

√ √
DS, HCD FOU

Fazzolari et al. [18] 2014 CLAS.
√ √

MOEA FD
Lu  et al. [25] 2014 REG.

√ √
TW

√

NR = number of rules, CBC = condition-based clustering, CM = clustering method, CONST. = constraint, Acc. = accuracy, O/U = overfitting/underfitting, FCM = Fuzzy c-means,
REG. = regression, CLAS. = classification, GFS = genetic Fuzzy system, HL = Hebbian learning, SM = similarity measure, LSM = least square mean, DS = distance similarity,
UE  = uncertainty estimation, FOU = footprint of uncertainty, HCD = hybrid centroid density, MOEA = multi-objective evolutionary algorithm, FD = Fuzzy discretization,
TW  = time window.

and Quek [12], respectively. These fuzzy systems have attempted
to design a consistent and compact fuzzy rulebase system to ensure
a clear semantic meaning of fuzzy partitions with reasonable accu-
racy. Self-adaptation in these fuzzy systems [7,11,12] is applied
at the consequent and antecedent parts independently; therefore,
structure learning includes pruning inconsistent or identical rules
and deleting orphaned rules. Hence, an operational framework for
granular computing is needed to synchronize the self-adaptation
in both consequent and antecedent parts, and the formation of the
distinct information granule is required to consider the aforemen-
tioned limitations of the existing methods.

Interpretability and accuracy are two contradictory require-
ments for the fuzzy information granule [4,6–12]. Interpretability
is the ability to explain the behavior of an application system
in an understandable way. Accuracy is the capability to repre-
sent the similarity between the real test data and the proposed
fuzzy model. Mean square error (MSE) or root MSE  (RMSE) meas-
ures the accuracy of how reasonable the model is with respect
to the real test data. Nevertheless, interpretability is a subjective
property, and its measure remains an open problem [29]. Most
researchers use the following aspects for interpretability measure:
fewer rules, fuzzy linguistic terms that have semantic property,
and rule premises [29]. Table 1 summarizes the works that con-
sider interpretability–accuracy tradeoff for fuzzy models grouped
by publication year. Information granule should be specific in a
way that well-defined semantics are experienced. Therefore, inter-
pretability constraint can be significantly considered for granular
computing to provide a descriptive representation of the exper-
imental evidence. Various models consider the interpretability
constraint, which is depicted in the eighth column of Table 1. Con-
sequently, various clustering approaches are considered to apply
the interpretability constraint (seventh column of Table 1). Nev-
ertheless, few studies considered the context or condition-based
approach and overfitting or underfitting situation while the evolv-
ing granulation process continues.

Furthermore, the concept of justifiable granularity and allo-
cation of information granularity [16,17,20,21,25] consist of the
fundamental blocks of granular computing. The optimal allocation
of information granularity [21,48] can be employed to group
decision making problems [22–24] in which the initial preferences
from the decision maker can be adapted to reach higher agreement
[48]. Nevertheless, the initial preferences are often arbitrarily
decided, and the designed model might not be able to achieve a
desirable performance because the granularity depends on the
distribution of the application problem. Therefore, granular com-
puting with sequential decision making was proposed in [26,27]
where finer granulation level with more detailed information is
considered. A relationship between progressive computing and

granular computing was proposed in SSEM [9], ECSFS [10], and
top-down progressive computing [28]. Progressive computing in
these models realizes an evolving granule system from coarser
information granulation to finer information granulation. SSEM
and ECSFS are used as overfitting and underfitting criteria to
continue progressive computing as depicted in Table 1.

Models to overcome the interpretability–accuracy tradeoff are
well documented in literature. Numerous algorithms to represent
fuzzy granular models, adaptive neural fuzzy systems, and evolving
fuzzy systems have been developed. Motivated by the aforemen-
tioned existing models and Table 1, the following concerns are
significant when considering a computing framework for fuzzy
information granule: (1) evolving granule process from bloated
granularity (coarser partition) to higher granularity (fine partition),
(2) interpretability constraint for granular computing, (3) over-
fitting and underfitting situations in the evolving process, and (4)
the stability–plasticity tradeoff.

First, the information granule evolves from coarser to fine parti-
tion, which consequently provides the oblique decision boundaries
[8,31]; thus, the evolving process and its decision boundaries allow
us to achieve low model error. For example, ECSFS [11] and SSEM
[10] models are error-reducing evolving methods, and boundary
constraints are used in the evolving method. Consequently, many
studies on fuzzy granular approach focus on the improvement of
interpretability constraints (or decision boarders) to achieve a low
model error [16,17,20,21,25]; this is a second significant consider-
ation for granular computing. Therefore, evolving granule approach
and interpretability constraint are important to coexist concur-
rently. Hence, this computing framework can be a tradeoff between
interpretability and accuracy.

The third important consideration is the overfitting and under-
fitting situations in the evolving granule approach. Underfitting
occurs when information granule is too coarse to fit data, thereby
resulting in poor testing accuracy. Furthermore, some evolving
stages cannot properly represent the data when the evolving
granule process continues, which results in an unbalanced state.
Therefore, this unbalanced state leads to fuzzy system overfitting
(i.e., the data fit is close because of the small and unbalanced
information granule), thereby resulting in poor testing accuracy.
Hence, evolving granule approach should consider the under-
fitting and overfitting state of each evolving stage. Moreover,
the realization of these unbalanced states can enhance the sys-
tem performance if stability–plasticity tradeoff is considered. The
stability–plasticity tradeoff is the fourth significant consideration
to design a granular framework, combines the past and any
future knowledge from the training data, and achieves a current
and up-to-date system for modeling the application environment
[11,12]. Therefore, the stability–plasticity tradeoff is important
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