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a  b  s  t  r  a  c  t

Most  experimental  studies  initialize  the population  of evolutionary  algorithms  with  random  genotypes.
In  practice,  however,  optimizers  are  typically  seeded  with  good  candidate  solutions  either  previously
known  or  created  according  to some  problem-specific  method.  This  seeding  has  been  studied  extensively
for  single-objective  problems.  For  multi-objective  problems,  however,  very  little  literature  is  available  on
the approaches  to seeding  and  their  individual  benefits  and  disadvantages.  In  this  article,  we are  trying
to narrow  this  gap  via  a comprehensive  computational  study  on common  real-valued  test  functions.  We
investigate  the  effect  of  two seeding  techniques  for  five  algorithms  on  48 optimization  problems  with 2,  3,
4, 6,  and 8  objectives.  We  observe  that  some  functions  (e.g.,  DTLZ4  and  the LZ  family)  benefit  significantly
from  seeding,  while  others  (e.g.,  WFG)  profit  less.  The  advantage  of  seeding  also  depends  on  the examined
algorithm.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In many real-world applications trade-offs between conflicting
objectives play a crucial role. As an example, consider engineer-
ing a bridge, where one objective might be costs to build and
another durability of the bridge. For such problems, we need spe-
cialized optimizers that determine the Pareto front of mutually
non-dominated solutions. There are several established multi-
objective evolutionary algorithms (MOEA) and many comparisons
on various test functions. However, most of them start with random
initial solutions.

If prior knowledge exists or can be generated at a low computa-
tional cost, good initial estimates may  generate better solutions
with faster convergence. These good initial estimates are often
referred to as seeds, and the method of using good initial esti-
mates is referred to as seeding. These botanical terms are used to
express the possibility that good solutions for the environment can
develop from these starting points. In practice, a good initial seed-
ing can make problem solving approaches competitive that would
otherwise be inferior.

For single-objective evolutionary algorithms, methods such
as seeding have been studied for about two  decades; see, e.g.,
[17,20,23,26,30,41] for studies and examples (see [27] for a recent
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categorization). For example, the effects of seeding for the Travel-
ing Salesman Problem (TSP) and the job-shop scheduling problem
(JSSP) were investigated in [32]. The algorithms were seeded with
known good solutions in the initial population, and it was found
that the results were significantly improved on the TSP but not on
the JSSP. To investigate the influence of seeding on the optimization,
a varying percentage of seeding was  used, ranging from 25 to 75%.
Interestingly, it was also pointed out that a 100% seed is not nec-
essarily very successful on either problems [28]. This is one of the
very few reports that shows seeding can in some cases be benefi-
cial to an optimization process, but not necessarily always is. In [21]
a seeding technique for dynamic environments was  investigated.
There, the population was  seeded when a change in the objective
landscape arrived, aiming at a faster convergence to the new global
optimum. Again, some of the investigated seeding approaches were
more successful than others.

One of the very few studies that can be found on seeding tech-
niques for MOEAs is the one performed by Hernandez-Diaz et al.
[22]. There, seeds were created using gradient-based information.
These were then fed into the algorithm called Non-Dominated
Sorting Genetic Algorithm II (NSGA-II, [10]) and the quality was
assessed on the benchmark family ZDT ([44], named after the
authors Zitzler, Deb, and Thiele). The results indicate that the
proposed approach can produce a significant reduction in the com-
putational cost of the approach.

In general, seeding is not well documented for multi-objective
problems, even for real-world problems. If seeding is done, then
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typically the approach is outlined and used with the comment that
it worked in “preliminary experiments”—the reader is left in the
dark on the design process behind the used seeding approach. This
is quite striking as one expects that humans can construct a few
solutions by hand, even if they do not represent the ranges of the
objectives well. The least that one should be able to do is to reuse
existing designs, and to modify these iteratively towards extremes.
Nevertheless, even this manual seeding is rarely reported.

In this paper, we are going to investigate the effects of two
structurally different seeding techniques for five algorithms on 48
multi-objective optimization (MOO) problems.

1.1. Seeding

As seeding we use the weighted-sum method, where the trade-
off preferences are specified by non-negative weights for each
objective. Solutions to these weighted-sums of objectives can be
found with an arbitrary classical single-objective evolutionary algo-
rithm. In our experiments we use the algorithm Covariance Matrix
Adaptation Evolution Strategy (CMA-ES, [18]). Details of the two
studied weighting schemes are presented in Section 2.1.

1.2. Quality measure

There are different ways to measure the quality of the solutions.
A recently very popular measure is the hypervolume indicator,
which measures the volume of the objective space dominated by
the set of solutions relative to a reference point [43]. Its disadvan-
tage is its high computational complexity [4,3] and the arbitrary
choice of the reference point. We  instead consider the mathemati-
cally well founded approximation constant. In fact, it is known that
the worst-case approximation obtained by optimal hypervolume
distributions is asymptotically equivalent to the best worst-case
additive approximation constant achievable by all sets of the same
size [6]. For a rigorous definition, see Section 2. This notion of
multi-objective approximation was introduced by several authors
[19,15,31,35,36] in the 80s and its theoretical properties have been
extensively studied [9,12,33,34,37].

1.3. Algorithms

We  use the jMetal framework [13] and its implementation of
NSGA-II [10], Strength Pareto Evolutionary Algorithm (SPEA2, [45]),
S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-
EMOA, [14]), and Indicator Based Evolutionary Algorithm (IBEA,
[42]). Additionally to these more classical MOEAs, we  also study
Approximation Guided Evolution (AGE, [7]), which aims at directly
minimizing the approximation constant and has shown to perform
very well for larger dimensions [38–40]. For each of these algo-
rithms we compare their regular behavior after a certain number
of iterations with their performance when initialized with a certain
seeding.

1.4. Benchmark families

We  compare the aforementioned algorithms on four common
families of benchmark functions. These are DTLZ ([11], named after
the authors Deb, Thiele, Laumanns and Zitzler), LZ09 ([29], named
after the authors Li and Zhang), WFG  ([24], named after the authors’
research group Walking Fish Group) and ZDT [44]. While the last
three families only contain two- and three-dimensional problems,
DTLZ can be scaled to an arbitrary number of dimensions.

2. Preliminaries

We  consider minimization problems with d objective functions,
where d ≥ 2 holds. Each objective function fi : S �→ R, 1 ≤ i ≤ d, maps
from the considered search space S into the real values. In order to
simplify the presentation we only work with the dominance rela-
tion on the objective space and mention that this relation transfers
to the corresponding elements of S.

For two  points x = (x1, . . .,  xd) and y = (y1, . . .,  yd), with x, y ∈ R
d

we define the following dominance relation:

x � y :⇔ xi ≤ yi for all 1 ≤ i ≤ d,

x ≺ y :⇔ x � y and x /= y.

We  assess the seeding schemes and algorithms by their achieved
additive approximation of the (known) Pareto front. We  use the
following definition.

Definition 1. For finite sets S, T ⊂ R
d, the additive approximation

of T with respect to S is defined as

˛(S, T) := max
s∈S

min
t∈T

max
1≤i≤d

(si − ti).

We  measure the approximation constant with respect to the
known Pareto front of the test functions. The better an algorithm
approximates a Pareto front, the smaller the additive approxima-
tion value is. Perfect approximation is achieved if the additive
approximation constant becomes 0. However, the approximation
constant achievable for a (finite) population with respect to a con-
tinuous Pareto front (consisting of an infinite number of points) is
always strictly larger than 0. It depends on the fitness function what
is the smallest possible approximation constant achievable with a
population of bounded size.

2.1. Seeding

For the task of computing the seeds, we  employ an evolutionary
strategy (ES), because it “self-adapts” the extent to which it per-
turbs decision variables when generating new solutions based on
previous ones. CMA-ES [18] self-adapts the covariance matrix of a
multivariate normal distribution. This normal distribution is then
used to sample from the multidimensional search space where each
variate is a search variable. The co-variance matrix allows the algo-
rithm to respect the correlations between the variables making it a
powerful evolutionary search algorithm.

To compute a seed, a (2,4)-CMA-ES minimizes
∑d

i=1aifi(x),
where the fi(x) are the objective values of the solution x. In prelim-
inary testing, we  noticed that larger population values for CMA-ES
tended to result in seeds with better objective values. This came at
the cost of significantly increased evaluation budgets, as the learn-
ing of the correlations takes longer. Our choice does not necessarily
represent the optimal choice across all 48 benchmark functions,
however, it is our take on striking a balance between (1) investing
evaluations in the seeding and (2) investing evaluations in the reg-
ular multi-objective optimization. Note that large computational
budgets for the seeding have the potential to put the unseeded
approaches at a disadvantage, if the final performance assessment
is not done carefully.

The number of seeds, the coefficients used, and the budget of
evaluations is determined by the seeding approaches, which we
will describe in the following.

CCornersAndCentre: A total of 10,000 evaluations is equally
distributed over the generation of d + 1 seeds. The rest of the
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