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a  b  s  t  r  a  c  t

Evolutionary  algorithms  start  with  an  initial  population  vector,  which  is randomly  generated  when  no
preliminary  knowledge  about  the solution  is  available.  Recently,  it  has  been  claimed  that  in solving con-
tinuous  domain  optimization  problems,  the  simultaneous  consideration  of  randomness  and  opposition
is  more  effective  than  pure  randomness.  In  this  paper  it is  mathematically  proven  that  this  scheme,
called  opposition-based  learning,  also  does  well  in  binary  spaces.  The  proposed  binary  opposition-based
scheme  can  be  embedded  inside  many  binary  population-based  algorithms.  We applied  it  to  accelerate
the  convergence  rate  of binary  gravitational  search  algorithm  (BGSA)  as  an application.  The  experimental
results  and  mathematical  proofs  confirm  each  other.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Many real-world problems such as feature selection and dimen-
sionality reduction, data mining, unit commitment, and cell
formation, are formulated as optimization problems with binary
variables. In addition, problems defined in the real space may  be
considered in the binary space since binary coding provides some
of the algorithms with a lot of flexibility by decomposing each real
value and allowing the implicit parallelism to take advantage of
this. In the past decades, different kinds of nature-inspired evolu-
tionary optimization algorithms have been designed and applied
to solve binary-encoded optimization problems, e.g., binary dif-
ferential evolution [1], binary particle swarm optimization [2],
binary ant colony optimization [3], genetic algorithm [4], and
binary gravitational search algorithm [5]. This algorithms start with
an initial population vector, which is randomly generated when
no preliminary knowledge about the solution space is available.
The computation time is directly related to the distance of initial
guesses from the optimal solution.

We  can improve our chance to start with a closer (fitter) solution
by checking the opposite solution simultaneously [6]. The con-
cept of opposition-based learning (OBL) was originally introduced
by Tizhoosh [6]. It has been utilized in a wide range of learn-
ing and optimization fields. OBL was first proposed as a machine
intelligence scheme for reinforcement learning [6–8]. Afterward,
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it has been employed to enhance soft computing methods such
as fuzzy systems [9,10] and artificial neural networks [11–14]. OBL
has proven to be an effective method for solving optimization prob-
lems by combining it with differential evolution [15–17], particle
swarm optimization [18–21], ant colony optimization [22,23], sim-
ulated annealing [24], and gravitational search algorithm [25] in a
wide range of fields from image processing [10,26,27] to system
identification [28,29]. It has been also applied to assist evolution-
ary algorithms in solving discrete and combinatorial optimization
problems [30]. It has been shown that in terms of convergence
speed, utilizing random numbers and their opposite is more bene-
ficial than using the pure randomness to generate initial estimates
in absence of a prior knowledge about the solution of a contin-
uous domain optimization problem [31]. In this paper, it will be
mathematically proven that this fact can be extended to binary
optimization problems. It is noticeable that the proofs in [31] are
not suitable for binary spaces.

Binary gravitational search algorithm, introduced by Rashedi
et al., is a stochastic search algorithm based on the law of gravity
and mass interactions [5]. In BGSA, the search agents are a collection
of masses which interact with each other based on the Newto-
nian theory that postulates every particle in the universe attracts
every other particle with a force that is directly proportional to the
product of their masses and inversely proportional to the square of
the distance between them. BGSA is able to optimize both real and
binary optimization problems. The effectiveness of this algorithm
in solving a set of nonlinear benchmark functions has been proven
[5].

This paper is organized as follows. In Section 2 the concept
of opposition-based learning in continuous and binary spaces are
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introduced. It also covers the theorems and proofs corresponding
to opposition in binary domains. Section 3 provides a brief review
of binary gravitational search algorithm. The outline of opposition-
based binary gravitational search algorithm is presented in Section
4. Then, an experimental study is given in Section 5, where OBL is
applied to accelerate the convergence rate of BGSA as an applica-
tion and the performance of the new algorithm will be evaluated
on nonlinear benchmark functions. Finally, a conclusion is given in
Section 6.

2. Opposition-based learning

In this section, first, the concept of opposition-based learn-
ing in the continuous space is reviewed. Afterward, it will be
defined in binary domains and its corresponding theorems will be
proven.

2.1. Opposition in continuous domain

Definition 1. Let x ∈ [a, b] be a real number. The opposite number,
denoted by �x, is defined by �x = a + b − x.

This definition can be extended to higher dimensions [6].

Definition 2. Let X(x1, x2, . . .,  xd) be a point in d-dimensional space,
where x1, x2, . . .,  xd are real numbers and xi ∈ [ai, bi], i = 1, 2, . . .,  d.
The opposite point of X is denoted by

�
X(�x1, �x2, . . ., �xd) where �xi =

ai + bi − xi, i = 1, 2, . . .,  d.

2.2. Opposition in binary domain

Although, opposition-based learning was created for accelerat-
ing a continuous search space, it can be applied alongside binary
space. In this section we prove that a binary opposite point is more
likely to be closer to the solution than a random one. To follow this
purpose, first we modify the previous definitions as follows.

Definition 3. Let x ∈ {0, 1}. The opposite number, denoted by �x, is
defined by �x = 1 − x.

Similarly, this definition can be extended to higher dimensions.

Definition 4. Let X(x1, x2, . . .,  xd) be a point in d-dimensional
binary space S = {0, 1} d where xi ∈ {0, 1} , i = 1, 2, . . .,  d. The oppo-
site point of X is denoted by

�
X(�x1, �x2, . . ., �xd) where �xi = 1 − xi, i =

1, 2, . . .,  d.

In this paper, the distance between two points is computed
based on the Hamming distance which is defined as follows.

Definition 5. The Hamming distance between two binary vectors
x, y ∈ {0, 1} d is defined by

HD(x, y) =
d∑

i=1

x(i) ⊕ y(i), (1)

where “⊕ ” is the XOR, and x(i) and y(i) are the ith bits of x and y.
In other words, Hamming distance gives the number of positions
in which two  binary vectors differ. It is obvious that x(i) ⊕ y(i) can
be replaced by the absolute value of the arithmetic subtraction∣∣x(i) − y(i)

∣∣.

Now, we  are going to prove our theorems.

Theorem 1. Every point X(x1, x2, . . .,  xd) in the d-dimensional binary
space with xi ∈ {0, 1} , i = 1, 2, . . .,  d, has a unique opposite point
�
X(�x1, �x2, . . ., �xd) defined by �xi = 1 − xi, i = 1, 2, . . .,  d.

Proof. Let both
�
X(�x1, �x2, . . ., �xd) and X ′(x′

1, x′
2, . . .,  x′

d
) be the oppo-

site points of X(x1, x2, . . .,  xd). According to the definition of opposite
point, for each i, 1 ≤ i ≤ d, we have �xi = 1 − xi and x′

i
= 1 − xi and so

�xi = x′
i
. This means that

�
X = X ′. �

Theorem 2. Let X(x1, x2, . . .,  xd) be a point in d-dimensional binary
space, where xi ∈ {0, 1} , i = 1, 2, . . .,  d, and

�
X(�x1, �x2, . . ., �xd) is its

opposite point. Then, for each Y ∈ {0, 1} d we have

HD(X, Y) = d − HD(
�
X, Y).

where HD denotes the Hamming distance.

Proof. It is clear that for each x ∈ {0, 1}, x2 = x. So,

HD(X, Y) =
d∑

i=1

x(i) ⊕ y(i) =
d∑

i=1

∣∣xi − yi

∣∣ =
d∑

i=1

∣∣1 − �xi − yi

∣∣

=
d∑

i=1

(1 − �xi − yi)
2 =

d∑
i=1

(�x2
i − 2�xi + y2

i − 2yi + 2�xiyi + 1).

Since �xi = �x2
i

and yi = y2
i
, we have

d∑
i=1

(�x2
i − 2�xi + y2

i − 2yi + 2�xiyi + 1) =
d∑

i=1

(−�x2
i − y2

i + 2�xiyi + 1)

=
d∑

i=1

(1 − (�xi − yi)
2) = d −

d∑
i=1

∣∣�xi − yi

∣∣ = d − HD(
�
X, Y).

Hence, HD(X, Y) = d − HD(
�
X, Y). �

Definition 6. Let X(x1, x2, . . . xd) be a candidate solution for a
binary optimization problem. Assume f(X) is a fitness function
which is used to measure candidates optimality. According to oppo-
site point definition,

�
X(�x1, �x2, . . ., �xd) is the opposite point of X(x1,

x2, . . .,  xd). Now, if f (
�
X) ≥ f (X), then point X can be replaced with

�
X. Otherwise, we  continue with X Hence, the point and its opposite
are evaluated simultaneously to continue with the fitter one.

When evaluating a solution X to a given problem, simulta-
neously computing its opposite solution will provide another
chance for finding a candidate solution closer to the global opti-
mum.  The following theorem answers this significant question:
why is an opposite number more effective than an independent
random number.

Theorem 3. Assume y = f(X) is an arbitrary function with at least
one solution at Xs(xs1 , xs2 , . . .,  xsd

), xsi
∈ {0, 1}, i = 1, 2, . . .,  d. Sup-

pose X(x1, x2, . . .,  xd) and Xr(xr1 , xr2 , . . .,  xrd
) are the first and second

random guesses in the solution space respectively. Then

(i) Pr(
∥∥�

X, Xs

∥∥ ≤ min{
∥∥X, Xs

∥∥ ,
∥∥Xr, Xs

∥∥}) > Pr(
∥∥Xr, Xs

∥∥ ≤ min{
∥∥X, Xs

∥∥ ,
∥∥�

X, Xs

∥∥), (2)

where d /= 1. In other words, The probability that the distance
between

�
X and Xs be less than or equal to the distance between {X,

Xr} and Xs is more than the probability that the distance between
Xr and Xs be less than or equal to the distance between {X,

�
X} and

Xs. In fact,
�
X is  more probable than Xr to be the closest to Xs among

{X,
�
X, Xr}. Equality holds in Eq. (2) when d = 1.

(ii) Pr(min{
∥∥X, Xs

∥∥ ,
∥∥�

X, Xs

∥∥} ≤ min{
∥∥X, Xs

∥∥ ,
∥∥Xr, Xs

∥∥}) > Pr(min{
∥∥X, Xs

∥∥ ,
∥∥Xr, Xs

∥∥} ≤ min{
∥∥X, Xs

∥∥ ,
∥∥�

X, Xs

∥∥}), (3)
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