
Please cite this article in press as: A. Draa, et al., A sinusoidal differential evolution algorithm for numerical optimisation, Appl. Soft
Comput. J. (2014), http://dx.doi.org/10.1016/j.asoc.2014.11.003

ARTICLE IN PRESSG Model
ASOC 2602 1–27

Applied Soft Computing xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

A sinusoidal differential evolution algorithm for numerical
optimisation

Amer Draa ∗, Samira Bouzoubia, Imene BoukhalfaQ1

MISC Laboratory, Constantine 2 University, Algeria

a r t i c l e i n f o

Article history:
Received 18 January 2013
Received in revised form 4 November 2014
Accepted 4 November 2014
Available online xxx

Keywords:
Differential evolution
Sinusoidal parameter adjustment
Exploration
Exploitation
Optimisation

a b s t r a c t

This paper presents a new variant of the Differential Evolution (DE) algorithm called Sinusoidal Differ-Q3
ential Evolution (SinDE). The key idea of the proposed SinDE is the use of new sinusoidal formulas to
automatically adjust the values of the DE main parameters: the scaling factor and the crossover rate.
The objective of using the proposed sinusoidal formulas is the search for a good balance between the
exploration of non visited regions of the search space and the exploitation of the already found good
solutions. By applying it on the recently proposed CEC-2013 set of benchmark functions, the proposed
approach is statistically compared with the classical DE, the linearly parameter adjusting DE and 10 other
state-of-the-art metaheuristics. The obtained results have proven the superiority of the proposed SinDE,
it outperformed other approaches especially for multimodal and composition functions.

© 2014 Published by Elsevier B.V.

1. Introduction

Differential Evolution (DE) is a powerful optimisation meta-
heuristic that was first proposed by Price and Storn in 1995 [1,2].
Since then, this population-based metaheuristic has attracted the
attention of researchers in many fields. It was intensively used
to solve academic and real life problems, especially in the fields
of engineering and sciences. This evolutionary algorithm is con-
sidered as one of the most reliable and versatile optimisation
techniques available today [3].

Differential evolution uses rather a greedy selection and less
stochastic approach to solve optimisation problems than other clas-
sical evolutionary algorithms. It differs from other evolutionary
algorithms in the mutation and recombination phases. Unlike some
metaheuristic techniques such as genetic algorithms and evolution
strategies, where perturbation occurs in accordance with random
quantities, DE uses weighted differences between solution vectors
to perturb a given population [1,4].

According to Price [5], differential evolution has the ability to
find the true global optimum regardless of the initial parameter
values, is fast and simple with regard to application and modifi-
cation, requires few control parameters, has a parallel processing
nature and offers fast convergence, capable of providing multiple

∗ Corresponding author. Tel.: +213 791844353Q2
E-mail addresses: draa amer@yahoo.fr (A. Draa), samira.bouzoubia@hotmail.fr

(S. Bouzoubia), boukhalfaimene@hotmail.com (I. Boukhalfa).

solutions at a single run, effective on integer, discrete and mixed
parameter optimisation and able to find the optimal solution for
a non-linear constrained optimisation problem with penalty func-
tions. It is clear that conventional DE is a bit overestimated by its
inventors; new optimisation problems proved that DE sometimes
fails at finding the global optimum, when failing at achieving a good
balance between the exploitation of the already-found good solu-
tions and the exploration of the non-visited regions of the search
space. This weakness has led to the emergence of many variants of
the basic algorithm.

Basic variants of DE were first defined and used by its inventors,
Price and Storn, to solve optimisation problems [2,5–7]. Later on,
other variants have been proposed and thoroughly studied, by other
researchers, to analyse their explorative and exploitive capabilities.
For example, in [8], Lampinen proposed a DE algorithm for handling
non-linear constraint functions. In [9], Gamperle et al. initiated the
series of works studying the influence of parameters’ values on the
performance of the DE algorithm; the authors gave some guidance
about parameter values setting.

Through comparing differential evolution with other evolution-
ary techniques, such as Particle Swarm Optimisation (PSO) [10],
and with the emergence of many new variants of the DE algo-
rithm, the problem of parameters setting and its impact on the
overall performance of the algorithm appeared as a serious chal-
lenge for researchers interested in exploiting this metaheuristic
(DE) for solving daily life problems. Hence, new variants working on
the adjustment and adaptation of DE parameters, especially those
based on hybridising DE with other evolutionary techniques, have

http://dx.doi.org/10.1016/j.asoc.2014.11.003
1568-4946/© 2014 Published by Elsevier B.V.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

dx.doi.org/10.1016/j.asoc.2014.11.003
dx.doi.org/10.1016/j.asoc.2014.11.003
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:draa_amer@yahoo.fr
mailto:samira.bouzoubia@hotmail.fr
mailto:boukhalfaimene@hotmail.com
dx.doi.org/10.1016/j.asoc.2014.11.003

Please cite this article in press as: A. Draa, et al., A sinusoidal differential evolution algorithm for numerical optimisation, Appl. Soft
Comput. J. (2014), http://dx.doi.org/10.1016/j.asoc.2014.11.003

ARTICLE IN PRESSG Model
ASOC 2602 1–27

2 A. Draa et al. / Applied Soft Computing xxx (2014) xxx–xxx

emerged in recent years [11–16]. A rich review of some of these
automatically parameter adjusting and adaptive variants of the DE
algorithm can be found in the recent survey of Das and Suganthan
about differential evolution [17].

In its original version [1], the DE algorithm uses a special type
of mutation in which a given individual is perturbed using the
weighted difference between two other individuals chosen ran-
domly from the population. The weight of this difference is known
as mutation scaling factor or scaling parameter. In early generations
of the algorithm, the individuals are relatively different from each
others. So, small values of the scaling factor will be able to offer good
diversity to the population. However, in later generations, the indi-
viduals would become very similar to each others, thanks to the
crossover operator. So, small values of the scaling factor will be vir-
tually incapable of offering diversity to the populations. Thus, the
algorithm is likely to fall in local optima, especially in the case of
high-dimension problems, where a big number of generations is
generally needed to get good solutions. As a result, more freedom
should be allowed to the algorithm to switch from exploration into
exploitation, and vice versa, through an automatic adjustment of
the values of parameters and so the change of search direction. In
the same way, the crossover rate can dramatically influence the
quality of solutions; a small value would lead to not getting profit
from the mutant, while a big value will make big perturbations.

In this perspective, we propose here a novel automatically
parameter adjusting version of differential evolution: the Sinu-
soidal Differential Evolution (SinDE). This variant uses a sinusoidal
framework to define the value of the mutation scaling factor and/or
the crossover rate at each generation. Different patterns are pro-
posed; some of them use the sinusoidal adjustment of only one
parameter, the other parameter is fixed to the recommended value;
other patterns adjust both parameters. This new scheme of cal-
culating DE parameter values, as will be shown in the numerical
results section, allows a good balance between exploration and
exploitation, since the parameter value increases and decreases
periodically, thanks to the periodicity of the Sine function. More-
over, the gradually-increasing (or decreasing) interval between
maximum and minimum allowed values of the parameter being
adjusted offers a good possibility to escape local optima.

The proposed SinDE algorithm has been tested on the recently
defined set of reference benchmark functions: the CEC-2013
testbed [18]. First, It has been compared using the Wilcoxon
rank-sum test against the classical DE, the linearly parameter-
adjusting DE (LADE), other four recent powerful variants of the
DE algorithm (the SMADE, the DEcfbLS, the b6e6rl and the TLB-
SaDE), and the recently proposed CMA-ES-RIS algorithm. Next, the
Holm–Bonferroni [19] statistical procedure has been used to fur-
ther compare SinDE to these algorithms and five other state-of-the
art algorithms. The obtained results show the superiority of the
proposed SinDE in both statistics; it has largely outperformed the
majority of these algorithms and has been slightly better than the
others.

The remainder of this paper is organised as follows. In Section 2,
basic concepts of differential evolution and its standard variants
are presented. The proposed sinusoidal DE, SinDE, and its different
patterns are described in Section 3. Section 4 validates the per-
formances of the proposed approach through comparing it against
classical DE and other state-of-the-art metaheuristics. The obtained
experimental results are discussed in the same section. Finally, con-
clusions and future directions of research are drawn up in Section 5.

2. Differential evolution

The Differential Evolution (DE) algorithm [1], follows the gen-
eral procedure of an evolutionary algorithm: an initial population
of individuals is created by random selection and evaluated; then

the algorithm enters a loop of generating offspring, evaluating off-
spring, and selection to create the next generation [20], till a stop
condition is met. Generating offspring consists of two operations:
differential mutation and differential crossover.

In basic DE, the mutation operation creates a new individual
vi called the mutant by adding the weighted difference between
two individuals (vectors) chosen randomly from the population to
a third one, also chosen randomly, as shown in Eq. (1) below [1]. In
the equation, i, i1, i2, i3 ∈ {1, . . . , NP} are mutually different indices,
NP is the size of population, and F is a real positive scaling factor of
the difference di = xi2 − xi3 .

vi = xi1 + F.(xi2 − xi3) (1)

The crossover operator implements a discrete recombination of the
mutant, vi, and the parent vector, xi, to produce the offspring ui. This
operator is formulated as shown in Eq. (2) below [21,22]; where:
Uj(0, 1) is a random number in the interval [0,1], CR ∈ [0, 1] is the
crossover rate, and k ∈ {1, 2, . . . , d} is a random parameter index,
chosen once for each individual i to be sure that at least one param-
eter is always selected from the mutant. Popular values for CR are
in the range [0.4, 1].

ui(j) =
{

vi(j), if Uj(0, 1) ≤ CR or j = k,

xi(j), otherwise
(2)

This type of crossover is called binomial crossover. Another type of
crossover used in DE is the exponential crossover. Its principle is
as follows. The starting position of crossover is chosen randomly
from

{
1, ..., d

}
, d is the problem dimension; then, L consecutive

elements (counted in circular manner) are taken from the mutant
vector v [16]. In the present work, we are interested in binomial
crossover.

After applying differential crossover, the obtained individual,
called trial vector, is compared to the parent individual (also called
target vector). A greedy selection takes place at this point, i.e. the
fittest of them will become the target vector. This selection oper-
ation, in the case of a minimisation problem, can be expressed
as shown in Eq. (3); in the formula, xi,G+1 is the new target vec-
tor (at generation G+1), ui,G+1 is the trial vector obtained from the
crossover operation, xi,G is the target vector at generation G, and
fit(*) is the fitness function. Of course, in the case of a maximisation
problem, the opposite comparison is used, i.e. a ‘≥’ replaces the ‘≤’
in the equation.

xi,G+1 =
{

ui,G+1, if eval(ui,G+1) ≤ eval(xi,G),

xi,G, otherwise,
(3)

As already stated, the differential evolution algorithm repeats these
three operations of mutation, crossover and selection till a stop
condition is met. The stop condition is generally chosen to be a pre-
determined number of generations. Another stop condition that can
be used is achieving the global optimum, when its fitness is already
known. The non-evolution of the best fitness among population
individuals is an other widely-used stop condition. Generally, it is
recommended to use a combination of two or three of these stop
conditions.

2.1. The ‘DE/x/y/z’ notation

A number of variations to the basic DE algorithm have been
developed in literature, mainly by its inventors [2,5–7]. DE strate-
gies differ in the way the target vector is selected, the number
of difference vectors used to perturb it, and haw to determine
crossover points. In order to characterise these variations, a
notation was adopted in differential evolution literature, namely
DE/x/y/z notation [2,7,21]. In this notation, x refers to the method

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

dx.doi.org/10.1016/j.asoc.2014.11.003

Download English Version:

https://daneshyari.com/en/article/6905346

Download Persian Version:

https://daneshyari.com/article/6905346

Daneshyari.com

https://daneshyari.com/en/article/6905346
https://daneshyari.com/article/6905346
https://daneshyari.com

