
Applied Soft Computing 28 (2015) 138–149

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

A new particle swarm optimization algorithm with adaptive inertia
weight based on Bayesian techniques

Limin Zhanga,b,c,∗, Yinggan Tanga, Changchun Huaa, Xinping Guana,b

a Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
b Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
c Department of Mathematics and Computer Science, Hengshui University, Hengshui 053000, China

a r t i c l e i n f o

Article history:
Received 1 April 2014
Received in revised form 15 October 2014
Accepted 20 November 2014
Available online 9 December 2014

Keywords:
Particle swarm optimization
Monte Carlo
Gaussian distribution
Bayesian techniques

a b s t r a c t

Particle swarm optimization is a stochastic population-based algorithm based on social interaction of bird
flocking or fish schooling. In this paper, a new adaptive inertia weight adjusting approach is proposed
based on Bayesian techniques in PSO, which is used to set up a sound tradeoff between the exploration and
exploitation characteristics. It applies the Bayesian techniques to enhance the PSO’s searching ability in
the exploitation of past particle positions and uses the cauchy mutation for exploring the better solution.
A suite of benchmark functions are employed to test the performance of the proposed method. The
results demonstrate that the new method exhibits higher accuracy and faster convergence rate than
other inertia weight adjusting methods in multimodal and unimodal functions. Furthermore, to show
the generalization ability of BPSO method, it is compared with other types of improved PSO algorithms,
which also performs well.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Particle swarm optimization (PSO) was firstly introduced by
Kennedy and Eberhart in 1995 [1]. It belongs to evolutionary algo-
rithm (EA), however differs from other evolutionary algorithms,
which is inspired by the emergent motion of a flock of birds
searching for food. PSO performs well in finding good solutions for
optimization problems [2], and it has become another powerful tool
besides other evolutionary algorithms such as genetic algorithms
(GA) [3]. PSO is initialized with a population of particles randomly
positioned in an n-dimensional search space. Every particle in the
population has two vectors, i.e., velocity vector and position vec-
tor. The PSO algorithm is recursive, which motivates social search
behavior among particles in the search space, where every particle
represents one point. In comparison with other EAs such as GAs,
the PSO has better search performance with faster and more stable
convergence rates.

Maintaining the balance between global and local search in the
course of all runs is critical to the success of an optimization algo-
rithm [4]. All of the evolutionary algorithms use various methods
to achieve this goal. To bring about a balance between the two

∗ Corresponding author at: Institute of Electrical Engineering, Yanshan University,
Qinhuangdao 066004, China. Tel.: +86 18230357919.

E-mail address: limin zhang@yeah.net (L. Zhang).

searches, Shi and Eberhart proposed a PSO based on inertia weight
in which the velocity of each particle is updated according to a fixed
equation [5]. A higher value of the inertia weight implies larger
incremental changes in velocity, which means the particles have
more chances to explore new search areas. However, smaller iner-
tia weight means less variation in velocity and slower updating for
particle in local search areas.

In this paper, the inertia weight strategies are categorized into
three classes. The first class is simple that the value of the inertia
weight is constant during the search or is selected randomly. In [6],
the impact of the inertia weight is analyzed on the performance
of the PSO. In [7], Eberhart and Shi use random value of inertia
weight to enable the PSO to track the optima in a dynamic envi-
ronment. In the second class, the inertia weight changes with time
or iteration number. We name the strategy as time-varying inertia
weight strategy. In [8,9], a linear decreasing inertia weight strategy
is introduced, which performs well in improving the fine-tuning
characteristic of the PSO. Lei et al. use the Sugeno function as inertia
weight declined curve in [10]. Many other similar linear approaches
and nonlinear methods are applied in inertia weight strategies such
as in [11–13]. The last class is some methods that inertia weight is
revised using a feedback parameter. In [4], a fuzzy system is pro-
posed to dynamically adapt the inertia weight. In [14], the inertia
weight is determined by the ratio of the global best fitness and
the average of particles’ local best fitness in each iteration. In [15],
A new strategy is presented that the inertia weight is dynamically

http://dx.doi.org/10.1016/j.asoc.2014.11.018
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.11.018
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.11.018&domain=pdf
mailto:limin_zhang@yeah.net
dx.doi.org/10.1016/j.asoc.2014.11.018

L. Zhang et al. / Applied Soft Computing 28 (2015) 138–149 139

adjusted according to average absolute value of velocity, which fol-
lows a given nonlinear ideal velocity by feedback control, which can
avoid the velocity closed to zero at the early stage. In [16], dynamic
acceleration parameters (DAP) method is proposed, which owns
a mechanism to self-tune the acceleration parameters by utilising
the averaged velocity information of the particles. In [17], a new
adaptive inertia weight strategy is proposed based on the success
rate of the particles. In this strategy the success rate of the particles
is used as a feedback parameter to realize the state of the parti-
cles in the search space and hence to adjust the value of inertia
weight.

A series of other studies based on mutation strategy has
been done on the analysis and development of the PSO since
it was introduced in 1995. These approaches aim to improve
the PSO’s convergence velocity. In [18], a mutation operator is
used that changes a particle dimension value using a random
number drawn from a Gaussian distribution (GPSO). A particle
is selected for mutation using a mutation rate that is linearly
decreased during a run. In [19], a mutation strategy is proposed
that a particle position is changed using a random number drawn
from a Gaussian distribution. A mutation operator in [20] is sim-
ilar to that of Ref. [18], but a Cauchy probability distribution
is used instead (CPSO). The Cauchy distribution curve is similar
to the Gaussian distribution curve, except it has more probabil-
ity in its tails and thus making it more likely to return larger
values. In [21], the HPSO with a wavelet mutation (HWPSO) is
proposed, in which the mutation incorporates with a wavelet func-
tion.

Hybrid PSOs (HPSOs) have been proposed to enhance the per-
formance of the PSO, in which different mutation strategies are
used. In [22], premature convergence is avoided by adding a muta-
tion strategy, i.e., a perturbation to a randomly selected particle’s
velocity vector. A Cauchy mutation (HPSO) [23] is proposed, which
is used in best particle mutation, so that the best particle could
lead the rest of the particles to better positions. The algorithm in
[24] called IPSO + ACJ is tested on a suite of well known benchmark
multimodel functions and the results. The main idea of our new
jump strategy is that pbest and gbest are selected as mutated par-
ticles when they have not been improved in a predefined number
of iterations. In [25], Ant colony optimization (ACO) and PSO work
separately at each iteration and produce their solutions. In [26],
The new mutation strategy makes it easier for particles in hybrid
MRPSO (HMRPSO) to find the global optimum and seek a balance
between the exploration of new regions and the exploitation of the
old regions.

Fuzzy approaches for PSO is a hot topic in these years. In [27],
a fuzzy system is used to dynamically adjust the inertia weight
and learning factors of PSO in each topology. In [28], a dynamic
parameter adaptation is proposed to improve the convergence and
diversity of the swarm in PSO using fuzzy logic. Valdezis et al.
[29] introduced an improved FPSO + FGA hybrid method, which
combines the advantages of PSO and GA. See Ref. [30] for a compre-
hensive review on the application of fuzzy logic in PSO, ACO and
Gravitational Search Algorithm (GSA).

There are some works that have used the Bayesian technique in
smart computing. In [31], the Dynamic Bayesian Network (DBN) is
used in PSO algorithm for particle motion. In swarm optimization,
each particle tries to track the trajectory toward the place of better
fitness. Martens et al. [32] explained scientifically the application
of the Bayesian network in ACO. In our paper, Bayesian techniques
is introduced into the PSO algorithm with a view to enhance its
adaptive search ability. We call this algorithm as PSO with Bayesian
techniques (BPSO). Different from other inertia weight strategies
in the references, BPSO algorithm adjusts the inertia weight ω
based on the past particle places automatically. This new devel-
opment gives particles more opportunity to explore the solution

space than a standard PSO. Furthermore, the new algorithm accel-
erates search velocity for the particles in valuable search-space
regions.

This paper is organized as follows. In Section 2, generic PSO the-
ory is reviewed and the change of particle position ε is analyzed.
Section 3 introduces the advantage of PSO with Bayesian Tech-
niques. Section 4 shows the experimental settings for the bench-
marks, simulation results and parameters analysis in the BPSO.
Finally, Section 5 presents conclusions resulting from the study.

2. Particle swarm optimization

2.1. Generic PSO theory

PSO is also a population-based stochastic optimization algo-
rithm and starts with an initial population of randomly generated
solutions called particles. Each particle in PSO has a position and a
velocity. PSO remembers both the best position found by all par-
ticles and the best positions found by each particle in the search
process. For a search problem in an n-dimensional space, a poten-
tial solution is represented by a particle that adjusts its position and
velocity according to Eqs. (1) and (2):

vi,d(t + 1) = ωvi,d(t) + c1r1(Ppid − xi,d(t)) + c2r2(Pgd − xi,d(t)) (1)

xi,d(t + 1) = xi,d(t) + vi,d(t + 1) (2)

where c1 and c2 are two learning factors which control the influ-
ence of the social and cognitive components and ri = randi, (i = 1,
2) are numbers independently generated within the range of [0,1].
vi,d(t) is the velocity of individual i on dimension d. xi,d(t) is current
particle position on dimension d. Ppid (pbest) is the best local posi-
tion of individual i on dimension d, and Pgd (gbest) represents the
best particle position among all the particles in the population on
dimension d. ω is the inertia weight, which ensures the convergence
of the PSO algorithm.

According to Eq. (2), changes in the position of particles depend
exclusively upon the position item of the PSO. Therefore, we only
use the position item to investigate the search ability of parti-
cles during iterations. The implicit form of the position equation
presented in Eq. (2) is used for a multi-particle PSO working in a
multi-dimensional search space. Since the data of each dimension
in the PSO are independent, the analysis below will be restricted to
a single dimension. We simplify the Eqs. (1) and (2) as follow:

V(t + 1) = ωV(t) + c1r1(Pp − X(t)) + c2r2(Pg − X(t)) (3)

X(t + 1) = X(t) + V(t + 1) (4)

The following formulas can be obtained from Eq. (4):

V(t + 1) = X(t + 1) − X(t), V(t) = X(t) − X(t − 1) (5)

By substituting Eq. (5) into Eq. (3), the following non-
homogeneous recurrence relation is obtained:

X(t + 1) = (1 + ω − c1r1 − c2r2)X(t) − ωX(t − 1)

+ (c1r1Pp − c2r2X(t)Pg) (6)

X(t + 1) = (1 + ω)X(t) − ωX(t − 1) + (c1r1Pp + c2r2Pg)

− (c1r1 + c2r2)X(t) (7)

Let ε = (c1r1Pp + c2r2Pg) − (c1r1 + c2r2)X(t), then

X(t + 1) = (1 + ω)X(t) − ωX(t − 1) + ε (8)

Download English Version:

https://daneshyari.com/en/article/6905356

Download Persian Version:

https://daneshyari.com/article/6905356

Daneshyari.com

https://daneshyari.com/en/article/6905356
https://daneshyari.com/article/6905356
https://daneshyari.com

