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a  b  s  t  r  a  c  t

Rough  sets  theory  is  widely  used  as  a method  for estimating  and/or  inducing  the  knowledge  structure
of  if-then  rules  from  various  decision  tables.  This  paper  presents  the results  of a  retest  of  rough  set rule
induction  ability  by the  use  of  simulation  data  sets.  The  conventional  method  has  two  main  problems:
firstly  the  diversification  of  the estimated  rules,  and  secondly  the  strong  dependence  of the  estimated
rules  on  the data  set sampling  from  the population.  We  here  propose  a  new  rule induction  method  based
on  the  view  that  the  rules  existing  in  their  population  cause  partiality  of  the  distribution  of  the  decision
attribute  values.  This  partiality  can  be  utilized  to  detect  the rules  by  use  of  a statistical  test.  The  proposed
new  method  is  applied  to the  simulation  data  sets.  The  results  show  the  method  is valid  and  has  clear
advantages,  as it  overcomes  the  above  problems  inherent  in the conventional  method.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Rough sets theory introduced by Pawlak [1] has been studied
as an object of mathematical interest, and has provided many use-
ful analytical methods in areas such as machine learning and data
mining. One of the important tasks of rough sets is to compute the
attribute reduct, which provides the construction of the decision
table of interest by the minimum number of attributes, maintain-
ing knowledge contained in it. Another task is to extract if-then
rules from the decision table, by the use of approximations with
indexes such as accuracy and coverage. This is useful for diagnosis
systems for diseases, discrimination problems, and other aspects.
Theoretical studies and practical algorithms for the above two tasks
are available in the literature [2–7].

This paper presents the results of a retest of the ability of the
conventional basic rough set [4,6,7] by the use of simulation data
sets, and notes that the conventional method has two main prob-
lems. The first problem is that the estimated rules are composed of a
large number of subsets of the true rule set and/or indifferent rules.
That is, they cannot estimate rule sets specified in advance. The sec-
ond is the strong dependence of the estimated rules on the data set
sampling from the population. The results from one sample will
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differ from those from another. Attempts have been made to solve
these two  problems in the conventional method, by proposing the
variable precision rough set (VPRS) [5] and by studying the effects
of sampling from statistical viewpoints [8–11]. However, these tri-
als seem do not to be essential and /or direct studies to resolve these
problems, and they only partially succeed in improvement of them.

Consequently, we here propose a new method that directly esti-
mates the if-then rules by the use of a statistical hypothesis test.
Specifically, we regard the rule estimation problem by use of the
decision table as the problem of identifying a black box containing
rules. The inputs and outputs of the box are the condition part of
a if–then rule and the decision part of the rule, respectively. We
conduct a preliminary experiment in a white box which specifies
if-then rules in advance, generates the input of the condition part
randomly, and decides the output by use of the specified rules.
From this preliminary experiment, we  found that the decision table
basically contains two types of data set. The first is the data set con-
trolled by the rules in the rule box, and the second is the data set
not to be applied to the rules, and the output is obtained by chance.
Accordingly, we propose the following rule estimation strategy: (1)
We set up the null hypothesis that a trying rule as a test does not
exist in the black box. (2) We test the hypothesis using the data set
of the decision table sampling the population, and decide whether
the hypothesis is true or not. (3) We  repeat procedures (1) and (2)
changing the trying rule systematically and efficiently, and esti-
mate all the rules in the black box. The validity and usefulness are
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Table  1
An example of a decision table.

U C(1) C(2) C(3) C(4) C(5) C(6) D

1 1 1 4 3 6 1 1
2  4 1 1 5 4 4 2
3  6 4 6 1 6 1 1
4  2 2 4 3 1 1 2
·  · · · · · · · · · · · · · · · · · · · · · · ·
N  − 1 2 2 1 1 6 4 2
N  4 2 3 6 3 5 1

confirmed by comparing the results from our proposed method
with those by the conventional methods in a simulation experi-
ment.

2. Model of data generation

The decision table shown in Table 1 is first obtained. This is con-
ventionally denoted with S = (U, A = C ∪ D, V, �). Here, U = {u(i)|i = 1,
. . .,  N = |U|} is a sample set. A is an attribute set, C = {C(j)|j = 1, . . .,
|C|} is a condition attribute set, C(j) (j = 1, . . .,  |C|) is the member of
C and a condition attribute, and D is a decision attribute. V is a set
of attribute values and denoted with V =

⋃
a∈AVa and is character-

ized by an information function � : U × A → V. In this example, if a
= C(j) ∈ A (j = 1, . . .,  |C| = 6) then Va = {1, 2, . . .,  6} and if a = D then Va

= {1, 2}, and �(u(1), C(1)) = 1, �(u(2), C(1)) = 4 and so on.
The decision table in Table 1 is obtained by generating the con-

dition part of u(i) denoted by uC(i) with the uniform distribution
with regard to Va=C(j) (j = 1, . . .,  |C| = 6) and by deciding the decision
part of u(i) denoted by uD(i) by use of the following specified rules
R(1) and R(2), and decision assumptions (As1), (As2), and (As3):

Specified rules:

R(1): if C(1) = 1 ∧ C(2) = 1 ∨ C(3) = 1 ∧ C(4) = 1 then D = 1.
R(2): if C(1) = 2 ∧ C(2) = 2 ∨ C(3) = 2 ∧ C(4) = 2 then D = 2.

Decision assumptions:

(As1): uC(i) can be applied to R(k) and uD(i) is uniquely deter-
mined as D = d(k).

(As2): uC(i) cannot be applied to any R(k), and uD(i) can only be
determined randomly.

(As3): uC(i) can be applied to several R(k) (k = k1, k2, . . .)  and their
outputs of uC(i) conflict with each other. Accordingly, the
output of uC(i) must be randomly determined from the
conflicted outputs.

Here, ∧ is conjunction and ∨ is disjunction. The case of (As1) is
u(1) and u(4), (As2) is u(2), u(3) and u(N) and (As3) is u(N − 1) in
Table 1. The case of (As1) is a uniquely determined case, (As2) is
what is known as an indifferent case, and (As3) is an inconsistent
case.

3. Results of retest by the conventional method and its
consideration

We  generated three cases of the decision table using the
model in Section 2 with N = 10,000, applied two representative con-
ventional methods to them, and retested their abilities of rule
induction. The first method was the LEM2 algorithm [4], for which
software could be downloaded [12], and the second was the FDMM
algorithm [7] which was developed from the decision matrix
method [2,6]. Table 2 shows the results from the two methods using
the lower approximation. Nactual is the net number of N deleting the

Table 2
Three cases of comparisons of the time and the rule length on reducing rules between
LEM2, FDMM and STRIM (Nactual: actual data number).

Case no. Method Reducing
time [s]

Number of rule length

Data number 1 2 3 4 5 6 Total
(Nactual)

Case 1 FDMM 100 0 0 48 631 3650 35 4364
10000 LEM2 7061 0 0 47 523 3819 35 4424
(9482) STRIM 5 0 4 1 0 0 0 5
Case  2 FDMM 101 0 0 51 609 3751 37 4448
10000 LEM2 8504 0 0 47 527 3920 37 4531
(9417) STRIM 5 0 4 5 0 0 0 9
Case  3 FDMM 101 0 0 45 602 3770 42 4459
10000 LEM2 7059 0 0 43 501 3945 42 4531
(9432) STRIM 5 0 4 2 0 0 0 6

same data. The row of the table denoted STRIM will be explained in
Section 6. The experiment was conducted on a PC with a Celeron(R)
CPU with 2.67 GHz clock speed and 992 MB  of RAM memory. Reduc-
ing time in the table is the execution time of the rule induction for
reference. Number of rule length is the number of the conjunc-
tion in the condition part of the estimated rules. For example, if
the condition part is C(1) = 1 then the length is 1 (hereafter this
part is denoted with (100000) for convenience). If C(1) = 1 ∧ C(2) = 1
((110000)) then the length is 2. The length of C(1) = 1 ∧ C(2) = 1 ∧
C(3) = 1 ((111000)) is 3, the length of C(1) = 1 ∧ C(2) = 1 ∧ C(3) = 1
C(6) = 4 ((111004)) is 4, and so on. The number 48 at the rule length
3 of FDMM in Case 1 shows that FDMM inducted 48 rules of the
rule length 3. Total is the sum of the numbers of all the estimated
rules.

Table 3 incidentally shows one of the rules with the highest cov-
erage index by every rule length (RL) inducted by LEM2 for three
cases in Table 2. Here, (n1, n2) is the frequency of samples {uD=1(i)}
and {uD=2(i)} respectively which satisfy the corresponding condi-
tion part

∧
j (C(jk) = VC(jk)) of the inducted rules and is arranged

them as (|{D = 1}| = n1, |{D = 2}| = n2), and accuracy and coverage
indexes are defined as max(n1,n2)

n1+n2 and max(n1,n2)
|{D=i}| and respectively.

The column of kind of rule shows a category to which the corre-
sponding inducted rule belongs. Sub denotes a sub-rule of true rules
which are included in the true rules specified in advance, and Ind
denotes an indifferent rule which is not included in the true rules,
that is, not specified in the rule box in advance. For example, at the
first row of Case 1, RL = 3, the inducted rule is if (220300) then D = 2,
(n1, n2) was (0, 61), the accuracy is 61/61 = 1.0 since the lower
approximation was  used, the coverages is 61/4773 ≈ 0.013, and
kind of rule is Sub since (220300) is included in R(2) specified in
advance. From Tables 2 and 3, we  can see that:

(1) Regarding u(i) (i = 1, . . .,  Nactual) as a rule of D = 1 or D = 2, LEM2
and/or FDMM reduced the rule set, that is, the decision table to
about its 45 [%] with more than the rule length 3. The rules with
length 6 were not arranged at all.

(2) R(1) and R(2) specified in advance were rules with the length 2
and their total rules were 4. The rules induced by LEM2 and/or
FDMM were confirmed to be included in either R(1) or R(2),
or in different rules as shown in Table 3. Accordingly, LEM2
and/or FDMM estimated the sub-rules of the original rules
and/or indifferent rules obtained by chance from the sample
set, multiplying the number by several thousands. To say other
words, the estimated results by both methods have scarce reli-
ability since the coverage of those rules is very low though their
accuracy is one.

(3) Both methods are thought to be highly dependent on the sam-
ple data set, since the estimated rule set of the three cases
differed considerably.
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