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a  b  s  t  r  a  c  t

In  this  paper,  a metaheuristic  optimizer,  the  multi-objective  water  cycle  algorithm  (MOWCA),  is presented
for  solving  constrained  multi-objective  problems.  The  MOWCA  is  based  on  emulation  of the  water  cycle
process  in nature.  In this  study,  a set  of  non-dominated  solutions  obtained  by the  proposed  algorithm  is
kept  in an archive  to be used  to display  the  exploratory  capability  of  the  MOWCA  as  compared  to other
efficient  methods  in  the  literature.  Moreover,  to  make  a comprehensive  assessment  about  the  robustness
and  efficiency  of  the  proposed  algorithm,  the  obtained  optimization  results  are also  compared  with  other
widely  used  optimizers  for constrained  and  engineering  design  problems.  The  comparisons  are  carried
out  using  tabular,  descriptive,  and  graphical  presentations.

©  2014  Published  by  Elsevier  B.V.

1. Introduction

In recent decades, solving real-world engineering design and
resource-optimization problems via multi-objective evolutionary
algorithms (MOEAs) has become an attractive research area for
many scientists and researchers [1]. Many optimization methods
have been developed to deal with these kinds of problems [2,3].

In contrast to single-optimization problems, the main goal of
evolutionary algorithms in multi-objective optimization problems
(MOPs) is to find a set of best solutions, so-called non-dominated
solutions or Pareto-optimal solutions. In addition, non-dominated
solutions obtained by different evolutionary algorithms are one of
the most common ways to clarify and assess the robustness and
capabilities of a proposed algorithm.

In this situation, metaheuristic methods as a component of
evolutionary algorithms have been significant owing to their
fast convergence rate and accuracy [4]. Some of these methods
include the strength Pareto evolutionary algorithm (SPEA) [5],
SPEA2 [6], the Pareto archive evolution strategy (PAES) [7], the
micro-genetic algorithm (micro-GA) [8], the non-dominated sor-
ting genetic algorithm (NSGA) [9], NSGA-II [10], the multi-objective
particle swarm optimization (MOPSO) [11], the Pareto dominant
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based multi-objective simulated annealing with self-stopping cri-
terion (PDMOSA-I) [4], the vector immune algorithm (VIS) [12], the
elitist-mutation multi-objective particle swarm optimization (EM-
MOPSO) [13], the weight-based multi-objective immune algorithm
(WBMOIA) [14], the orthogonal simulated annealing (OSA) [15],
and the hybrid quantum immune algorithm (HQIA) [16].

Recently, some researchers have expressed enthusiasm
regarding immune-system algorithms for solving different types
of MOPs. In fact, many researchers have attempted to boost and
amend the main characteristics of immune algorithms to increase
the efficiency and convergence speed of these methods for solving
MOPs.

Representatives of immune-based algorithms include the
immune forgetting multi-objective optimization algorithm
(IFMOA) suggested by Zhang et al. [17], the immune dominance
clonal multi-objective algorithm (IDCMA) developed by Jiao
et al. [18], and the adaptive clonal selection algorithm for multi-
objective optimization (ACSAMO) proposed by Wang and Mahfouf
[19].

Furthermore, many studies prefer to combine metaheuristic
methods to take advantage of the predominant features of multi-
ple methods simultaneously. These approaches are so-called hybrid
techniques. There have been many researchers in the past who have
tried to use this idea to handle MOPs.

For instance, Kaveh and Laknejadi [20] introduced the novel
hybrid charge system search and particle swarm multi-objective
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optimization method (CSS-MOPSO). This multi-objective optimizer
is a hybridization of particle swarm optimization (PSO) and the
charged-system search method [20]. Another approach, recently
proposed by Narimani et al. [21], is called the HMPSO-SFLA method.
This hybrid optimization algorithm is based on the concepts of PSO
and the shuffle frog-leaping algorithms (SFLA) [21].

Deferential evolutionary for multi-objective optimization with
local search based on rough set theory (DEMORS) is another hybrid
method, presented by Coello et al. [22]. The DEMORS method has
also been used to solve constrained MOPs (CMOPs). Looking at the
mentioned algorithms, we can notice that the majority of these
approaches are classified as population-based methods.

Hence, there is enough proof to support the idea that
population-based algorithms are the most common way to solving
MOPs, primarily because this subject is linked to the characteristics
and potentials of these methods. In other words, these methods are
capable of handling both continuous and combinatorial optimiza-
tion problems having high accuracy and satisfactory convergence
speed to the Pareto-optimal solutions [4].

In this research, a recently developed population-based algo-
rithm, the multi-objective water cycle algorithm (MOWCA), is used
to tackle CMOPs. The proposed algorithm was first presented by
Eskandar et al. [23] for ordinary optimization problems. The basic
idea of the WCA  is inspired by the real-world water cycle process
in nature, including the motion of rivers to the sea. The MOWCA
algorithm is evaluated here by solving a set of engineering design
problems and CMOPs, and the final optimization results obtained
by the MOWCA  are compared with those of other metaheuristic
algorithms in the literature.

The remaining of the present paper is organized as follows. In
Section 2, the definition of standard MOPs is given, and the perfor-
mance criteria used for quantitative assessments are described. In
Section 3, a short description of the WCA, the definition of MOWCA,
and the concept of MOWCA  are introduced in detail. Numerical
examples and benchmark functions considered in this paper are
provided in Section 4, along with their results and discussion.
Finally, conclusions are drawn in Section 5.

2. Multi-objective problems

Multi-objective optimization problems (MOPs) can be defined
as optimization problems for which at least two objective functions
are to be optimized simultaneously. Mathematically, a MOP  can be
formulated as follows:

F(X) = [f1(X), f2(X), . . .,  fm(X)]T , (1)

where X = [x1, x2, x3, . . .,  xd] is a vector of design variables (d is the
number of design variables). One initial approach for solving MOPs
is to use weight factors to convert a MOP  into a single-optimization
problem [24]. This technique can be formulated based on the fol-
lowing equation:

F =
N∑

n=1

wnfn, (2)

where N is the number of objective functions and wn and fn are
weighting factors and objective functions, respectively.

It is worth mentioning that single-optimization problems have
just one point as the optimal solution. Hence, in order to find a set of
solutions, Eq. (2) has to be solved by using a wide variety of weight
factors; this is extremely time consuming and must be taken into
serious consideration as a major downside of this method.

In contrast, the most common way to solve MOPs is by keeping a
set of best solutions in an archive and updating the archive at each
iteration. In this approach, the best solutions are defined as non-
dominated solutions or Pareto optimal solutions [25]. A solution

Fig. 1. Optimal Pareto solutions (A and B) for the 2D domain.

can be considered as a non-dominated solution if and only if the
following conditions become satisfied by the solution as given:

(a) Pareto dominance: U = (u1, u2, u3, . . .,  un) < V = (v1, v2, v3, . . .,  vn)
if and only if U is partially less than V in the objective space, as
follows:{

fi(U) ≤ fi(V) ∀i

fi(U) < fi(V) ∃i
i  = 1, 2, 3, . . .,  n, (3)

where n is the number of objective functions.
(b) Pareto optimal solution: vector U is said to be a Pareto optimal

solution if and only if any other solutions cannot be determined
to dominate U. A set of Pareto optimal solutions is called a Pareto
optimal front (PFoptimal).

Fig. 1 gives an overview of the concept of non-dominated solu-
tions in MOPs. It can be seen from Fig. 1 that among three solutions
A, B, and C, solution C has the highest values for f1 and f2. This
means that this solution is a solution dominated by solutions A
and B. In contrast, both solutions A and B can be considered as
non-dominated solutions, as neither of them dominates each other.

2.1. Performance metric parameters

To make fair quantitative evaluations and judgments among
different types of MOEAs, three performance parameters that are
widely used to evaluate the performance of metaheuristic algo-
rithms are investigated in this paper. These criteria are defined in
detail in the following subsections.

2.1.1. Generational distance metric
The generational distance (GD) metric was first presented by

Veldhuizen and Lamont [26]. The main objective of this criterion is
to clarify the capability of the different algorithms of finding a set
of non-dominated solutions having the lowest distance with the
Pareto optimal fronts (PFoptimal).

Based on this definition, it can be understood that the algorithm
with the minimum GD has the best convergence to PFoptimal. This
evaluation factor is defined in mathematical form as can be seen in
the following equations [27]:

GD = 1
npf

( npf∑
i=1

d2
i

)1/2

, (4)

where npf is the number of members in the generated Pareto front
(PFg), and di is the Euclidean distance between member i in PFg and
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