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Available online 20 November 2014 breakwaters by considering all the boundary conditions. This is due to the complexity and non-linearity

associated with design parameters and damage level determination of non-reshaped berm breakwater.
Soft computing tools like Artificial Neural Network, Fuzzy Logic, Support Vector Machine (SVM), etc, are
successfully used to solve complex problems. In the present study, SVM and hybrid of Particle Swarm
Berm breakwater Optimization (PSO) with SVM (PSO-SVM) are developed to predict damage level of non-reshaped berm
Damage level breakwaters. Optimal kernel parameters of PSO-SVM are determined by PSO algorithm. Both the mod-
SVM els are trained on the data set obtained from experiments carried out in Marine Structures Laboratory,
PSO-SVM Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal,
India. Results of both models are compared in terms of statistical measures, such as correlation coeffi-
cient, root mean square error and scatter index. The PSO-SVM model with polynomial kernel function
outperformed other SVM models.
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1. Introduction lead to failure of armor layer [2-4]. The damage of a non-reshaped
berm breakwater is measured in terms of ‘damage level’ expressed
The breakwaters are constructed parallel to the shore in order by Van der Meer [5]. ‘Damage level’ is defined as the displacement
to protect the coast and harbors against wave action. They are also of armor units and is calculated using following formula [2]:
used for other purposes like dissipating wave energy and providing
loading and unloading facilities for cargo and passengers. A rubble S =
mound structure with the presence of horizontal berm at or above
still water level (SWL) on the sea side is called as berm breakwater.
They are classified into statically and dynamically stable structures
[1] depending on the behavior under design conditions. Stati-
cally stable structures are non-reshaped structures, where no or
minor damage is allowed to the structure under design conditions.
Whereas, dynamically stablestructures are reshaped into a stable
profile, in which the individual stones may move up and down the
slope. Many researchers have suggested adopting non-reshaped
berm breakwater in most of the cases, since, movement of armor
stones will lead to abrasion between the units and sometimes may
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where, A is the area of erosion and D59 = (Msg/0q)!/3 is the nominal
diameter of the stones.

Msg, median stone mass; pq, density of stone.

In the past, several researchers [6-13] have experimented on
berm breakwaters which are time consuming and expensive in
terms of cost. Further, there is no simple mathematical model to
predict the damage level considering all the boundary conditions
due to the complex nature of the problem which includes wave
structure interaction, angle of wave attack, movement of the armor,
etc.

Soft computing technique is an alternate solution to physical
model study and mathematical modeling, which can be adopted
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Vector Machine (SVM), Adaptive Neuro Fuzzy Inference System
(ANFIS), etc, are capable of solving these problems and are suc-
cessfully used in solving different coastal problems. Neural network
techniques have been adopted to predict the stability, damage level,
damage ratio and design of rubble mound breakwater [14-16]. Sup-
port Vector Machines (SVM) has been used for the prediction of
significant wave height [17] and also to predict the stability num-
ber of armor blocks of breakwaters [18]. Some of the hybrid soft
computing models were implemented for the preliminary design
of rubble mound breakwater which performed better than the tra-
ditional design using Van der Meer equations [5]. Patil et al. [19,20]
have developed ANFIS and Genetic algorithm based support vector
machine (GA-SVM) models for predicting wave transmission coef-
ficient of horizontally interlaced multilayer moored floating pipe
breakwater.

Further, the hybrid PSO-SVM was applied to diagnosis of
arrhythmia cordis [21], to forecast dissolved gases content in power
transformer oil [22], to radio frequency identification based posi-
tioning system [23] and recognizes targets obscured by foliage [24].
Their results showed that the PSO-SVM method gave higher accu-
racy with actual data compared with other soft computing models.
In this concern, it is observed that there are hardly any applications
of hybrid SVM models to study the stability of berm breakwaters.
Hence, in the present paper, performance of PSO-SVM technique
in predicting damage level of non-reshaped berm breakwaters is
investigated. PSO is used for optimization of SVM and kernel param-
eters. Performance of PSO-SVM models are compared with that of
SVM models.

2. Experimental data

The experimental work on non-reshaped berm breakwater was
carried out by Rao et al. [12,13] in Marine Structures Laboratory,
Department of Applied Mechanics and Hydraulics, National Insti-
tute of Technology Karnataka (NITK), Surathkal, India. The wave
flume is 50m long, 0.71 m wide, 1.1 m deep, and has 42 m long
smooth concrete bed. Fig. 1 shows a sketch of the wave flume.

Four set of experiments were carried out for 3000 waves for
deep water wave length (Lp). In the first set of experiment, stability
for different wave periods and height on conventional breakwa-
ter model with trapezoidal cross section with armor stone weight
W50 =74 g was tested. In the second set of experiments, statically
stable non-reshaped berm breakwater model was tested with the
armor stones weight Wsg =52 g which is about 30% less than 74 g.
They studied the influence of berm width on the stability of the
breakwater, run-up and rundown. In the third set of experiments
armor stones weight W5 =58.6 g was tested which is about 20% less
than 74 g. The influence of tidal effect and stability were studied by
changing the depth of water in front of the breakwater model. In
the fourth set of experiments the influence of location of the berm
and stability were studied by keeping the armor stones weight
W50 =52¢, the weight used in conventional breakwater. Damage
level (S) was computed using Eq. (1). The area of erosion in Eq. (1)
was measured using profiler system which consisted of nine brass
rod placed equidistance along the width of the flume. The profiler
was moved along the length of breakwater section to know the ini-
tial and final profile. Range of experimental variables is shown in
Table 1.

Many problems involving fluid motions are quite complex
in nature. In the present case the complex flow phenomenon
responsible for energy dissipation cannot be easily represented by
mathematical equations and one has to rely on experimental inves-
tigations. The results of such investigations are more useful when
expressed in the form of dimensionless relations. To arrive at such
dimensionless relations of different variables, dimensional analysis

Table 1

Range of experimental variables.
Variable Range
Wave height H (m) 0.10,0.12,0.14,0.16
Wave period T (s) 1.6,2.0,2.6

Water depth above the bed level d (m)
Water depth above or below the berm dg (m)

0.25,0.30, 0.35, 0.40
+0.08, +0.03, —0.02, —-0.07

Armor stone weight Wsg (gm) 52-4
Crest height above the seabed (m) 0.7
Berm width B (m) 0.6
Berm position above seabed hg (m) 0.32

was carried out by Rao et al. [12,13]. After conducting the dimen-
sional analysis using Buckingham’s-IT theorem the dimensionless
parameters, such as wave steepness (H/[Ly), surf similarity (¢), rel-
ative berm position by water depth (hg/d), armor stone weight
(Ws0/Wsomax ), relative berm width (B/Lg) and relative berm loca-
tion (hg/Lg) are obtained.

For the present damage analysis, experimental data are divided
into two sets, one for training about 80% data set and another
remaining data set for testing. Input parameters (Fig. 2) that influ-
ence the damage level (S) of non-reshaped berm breakwater are
H/Ly, &, hg/d, Ws0/Ws0max,» B/Lo and hg/Lg which are used to train
SVM and PSO-SVM models.

3. Particle Swarm Optimization tuned support vector
machine (PSO-SVM)

3.1. Support vector machines

The foundation of SVM has been developed by Vapnik [25] and
is gaining popularity due to many attractive features and promising
empirical performance. The formulation represents the Structural
Risk Minimization (SRM) principle [26] which has been shown to
be superior to traditional Empirical Risk Minimization (ERM) prin-
ciple as adopted by conventional neural networks. SRM principle
minimizes an upper bound on the expected risk, as opposed to ERM
principle that minimizes the error on the training data. This differ-
ence outfits SVM with a greater ability to generalize, which is the
goal in statistical learning. SVMs were developed to solve the clas-
sification problem, but recently they have been extended to the
domain of regression problems [27].

3.1.1. Mathematics behind SVM algorithm for regression

Consider a training data set g={(x1, y1), (X2, ¥2), ... (Xp, ¥p)},
such thatx; € vV is a vector of input variables and x; € vis the corre-
sponding scalar output (target) value. Here, the modeling objective
is to find a regression function, y =f{x), such that it accurately pre-
dicts the outputs {y} corresponding to a new set of input-output
examples, {(x, ¥)}, which are drawn from the same underlying
joint probability distribution as the training set. To fulfill the stated
goal, support vector regression (SVR) considers the following linear
estimation function Eq. (2):

f)=(w-x)+b (2)

where, w denotes the weight vector; b refers to a constant known as
‘bias’; f{x) denotes a function termed feature, and (w - x) represents
the dot product in the feature space, [, such that¢ : x — [, w € I. The
basic concept of support vector regression is to map nonlinearly the
original data x into a higher dimensional feature space and solve a
linear regression problem in this feature space.
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