G Model
ASOC-2580; No.of Pages11

Applied Soft Computing xxx (2014) XXX—-XXX

journal homepage: www.elsevier.com/locate/asoc

Contents lists available at ScienceDirect

Applied Soft Computing

Continuous probabilistic model building genetic network
programming using reinforcement learning

Xianneng Li®:?, Kotaro Hirasawa®:>-*

a Graduate School of Information, Production and Systems, Waseda University, Hibikino 2-7, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
b Information, Production and Systems Research Center, Waseda University, Hibikino 2-7, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan

ARTICLE INFO ABSTRACT

Article history:

Received 17 April 2013
Received in revised form
13 September 2014
Accepted 18 October 2014
Available online xxx

Recently, a novel probabilistic model-building evolutionary algorithm (so called estimation of distribu-
tion algorithm, or EDA), named probabilistic model building genetic network programming (PMBGNP),
has been proposed. PMBGNP uses graph structures for its individual representation, which shows higher
expression ability than the classical EDAs. Hence, it extends EDAs to solve a range of problems, such
as data mining and agent control. This paper is dedicated to propose a continuous version of PMBGNP

for continuous optimization in agent control problems. Different from the other continuous EDAs, the

Keywords:

Estimation of distribution algorithm
Probabilistic model building genetic
network programming

Continuous optimization
Reinforcement learning

proposed algorithm evolves the continuous variables by reinforcement learning (RL). We compare the
performance with several state-of-the-art algorithms on a real mobile robot control problem. The results
show that the proposed algorithm outperforms the others with statistically significant differences.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Despite the selection operator based on the concept of “Survival-
of-the-fittest”, classical Evolutionary Algorithms (EAs) generally
evolve the population of candidate solutions by the random
variation derived from biological evolution, such as crossover and
mutation. However, numerous studies report that the results of EAs
strongly rely on the configurations of the parameters associated
with the stochastic genetic operators, such as crossover/mutation
rate. For concrete problems, the parameter settings generally
vary. Hence, the parameter tuning itself becomes an optimization
problem. Meantime, the stochastic genetic operators sometimes
may not identify and recombine the building blocks (BBs, defined
by high-quality partial solutions) correctly and efficiently due to
the implicit adaptation of the building block hypothesis (BBH) [1,2],
which causes the problems of premature convergence and poor
evolution ability. These reasons have motivated the proposal of
a new class of EAs named estimation of distribution algorithm
(EDA) [3], which has received much attention in recent years [4,5].
As the name implies, EDA focuses on estimating the probability

* Corresponding author at: Graduate School of Information, Production and
Systems, Waseda University, Hibikino 2-7, Wakamatsu-ku, Kitakyushu, Fukuoka
808-0135, Japan. Tel.: +81 93 692 5261; fax: +81 93 692 5261.

E-mail addresses: sennou@asagi.waseda.jp (X. Li), hirasawa@waseda.jp
(K. Hirasawa).

http://dx.doi.org/10.1016/j.as0c.2014.10.023
1568-4946/© 2014 Elsevier B.V. All rights reserved.

distribution of the population using statistic/machine learning
to construct a probabilistic model. Despite the selection operator
which is also used to select the set of promising samples for the
estimation of probability distribution, EDA replaces the crossover
and mutation operators by sampling the model to generate new
population. By explicitly identifying and recombining the BBs using
probabilistic modeling, EDA has drawn its success to outperform
the conventional EAs with fixed, problem-independent genetic
operators in various optimization problems.

Numerous EDAs has been proposed, where there are mainly
three ways to classify the existing EDAs. (1) From the model
complexity viewpoint, EDAs can be mainly classified into three
groups [6]: univariate model, pairwise model and multivariate
model, which identify the BBs of different orders. Univariate model
assumes there is no interactions between the elements,! hence
constructing the probabilistic model by marginal probabilities to
identify BBs of order one. Similarly, pairwise and multivariate mod-
els use more complex methods to model BBs of order two and more.
One can easily observe that estimating the distribution is not an
easy task and modeling more accurate model generally requires
higher computational cost [4,7]. (2) From the perspective of indi-
vidual structures, EDA can mainly be classified into two groups,

1 The elements refer to the variables/alleles in genetic algorithm (GA), or nodes

in genetic programming (GP).

Please cite this article in press as: X. Li, K. Hirasawa, Continuous probabilistic model building genetic network programming using
reinforcement learning, Appl. Soft Comput. J. (2014), http://dx.doi.org/10.1016/j.as0c.2014.10.023



dx.doi.org/10.1016/j.asoc.2014.10.023
dx.doi.org/10.1016/j.asoc.2014.10.023
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:sennou@asagi.waseda.jp
mailto:hirasawa@waseda.jp
dx.doi.org/10.1016/j.asoc.2014.10.023

G Model
ASOC-2580; No.of Pages11

2 X. Li, K. Hirasawa / Applied Soft Computing xxx (2014 ) XxXx-xxx

which are probabilistic model building genetic algorithm (PMBGA)
[8] and PMB genetic programming (PMBGP) [9]. PMBGA studies
the probabilistic modeling using GA’s bit-string individual struc-
tures. PMBGP explores EDA to tree structures which provide more
complex ways to represent solutions for program evolution. (3) For
different problem domains, EDA can be grouped into discrete EDAs
and continuous EDAs, which solve the optimization problems of
discrete domain [4,8] and continuous domain [10-13].

A novel EDA, called probabilistic model building genetic net-
work programming (PMBGNP), was recently proposed [14-16].
PMBGNP is inspired by the classical EDAs, however, a distinguished
directed graph (network) structure [17-21] is used to represent its
individual. Hence, it can be viewed as a graph EDA that extends
conventional EDAs like bit-string structure based PMBGA and tree-
structure based PMBGP. The fundamental points of PMBGNP are:

1. PMBGNP allows higher expression ability by means of graph
structures than conventional EDAs.

2. Due to the unique features of its graph structures, PMBGNP
explores the applicability of EDAs to wider range of problems,
such as data mining [22,14,23] and the problems of controlling
the agents’ behavior (agent control problems) [16,24-26].

In the previous research, it has been demonstrated that PMBGNP
can successfully outperform classical EAs with the above problems.

However, PMBGNP is mainly designed for discrete optimization
problems. In other words, it cannot deal with (or directly handle)
continuous variables which are widely existed in many real-world
control problems. To solve this problem, the simplest way is to
employ discretization process to transfer the continuous variables
into discrete ones, however, which will cause the loss of solution
precision.

This paper is dedicated to an extension of PMBGNP to continu-
ous optimization in agent control problems. Different from most of
the existing continuous EDAs developed by incremental learning
[10], maximum likelihood estimation [11], histogram [27] or some
other sorts of machine learning techniques [28-32], the proposed
algorithm employs the techniques of reinforcement learning (RL)
[33], such as actor critic (AC), as the mechanism to estimate the
probability density functions (PDFs) of the continuous variables.
Although most of the classical continuous EDAs formulate the PDFs
of continuous variables by Gaussian distribution M 1, 02), the pro-
posed algorithm applies AC to calculate the temporal-difference
(TD) error to evaluate whether the selection (sampling) of con-
tinuous values is better or worse than expected. Based on the
idea of trial-and-error, a scalar reinforcement signal which can
decide whether the tendency to select the sampled continuous
value should be strengthened or weakened is formulated by the
gradient learning for the evolution of Gaussian distribution (u and
o).

Most importantly, as an extension of PMBGNP, the proposed
algorithm mainly possesses the ability to solve the agent control
problems, rather than the conventional continuous EDAs only for
function optimization problems. Accordingly, the applicability of
continuous EDAs is explored in certain degrees.

In this paper, the proposed algorithm is applied to control the
behavior of a real autonomous robot, Khepera robot [34,35], in
which the robot’s wheel speeds and sensor values are continuous
variables. To evaluate the performance of this work, various classi-
cal algorithms are selected from the literature of standard EAs, EDA
and RL for comparison.

The rest of this paper is organized as follows. Section 2 briefly
introduces the original framework of PMBGNP in the discrete
domain. In Section 3, extending PMBGNP to continuous domain is

explained in details. The experimental study is shown in Section 4.
Finally we conclude this paper in Section 5.

2. Probabilistic model building genetic network
programming

2.1. Directed graph (network) structure

From the explicit viewpoint, PMBGNP distinguishes itself from
the classical EDAs by using a unique directed graph (network) struc-
ture torepresentitsindividual, depicted in Fig. 1. The directed graph
structure is originally proposed in a newly graph-based EA named
Genetic Network Programming (GNP) [17,18,36]. Three types of
nodes are created to form the program (individual) of GNP:

e Start node: it has no function and conditional branch.

e Judgment node: it has its own judgment function and multiple
conditional branches.

e Processing node: it has its own processing function but no condi-
tional branch.

Each program is composed of one start node, multiple judgment
and processing nodes. Start node only plays the role on deciding
the first node to be executed. Judgment nodes imitate the “if-
then” decision-making functions to deal with the specific inputs
of the problems, such as the sensor values of the robot. Process-
ing nodes enforce the action functions for task solving, such as
determining the wheel speeds of the robot. By separating judg-
ment and processing functions, the distinguished directed graph
can deal with various combinations of judgments and processing to
efficiently evolve the compact programs by only selecting the nec-
essary judgments and processing. Such separation and selection
by necessity can efficiently generate partially observable markov
decision process (POMDP) [36] and ensure high generalization abil-
ity. The number of judgment and processing nodes is defined in
advance and problem specific. As a result, the directed graph never
causes the bloat problem of GP. Although a small number of nodes
is prepared, such a structure can obtain good performance by well
realizing the repetitive process by the frequent reuse of nodes.

More empirically, the directed graph can be encoded into bit-
strings as shown in Fig. 1, which is defined by a tuple

G = (Nnodes B, LIBRARY),

where N;,qe and B are the sets of nodes and branches in an indi-
vidual, respectively; LIBRARY is a set of judgment and processing
functions given by the tasks. Each node i€ Njyqe is defined by a
tuple 2

i = (NT;, NF;, B(i), G;).

NT; defines the node type, where 0, 1 or 2 for start, judgment or
processing node, respectively. NF; € LIBRARY represents its func-
tion. B(i) represents its set of branches. C; consists of a set of Cy
indicating the node connected from the k;, branch of node i.

In standard GNP, NT;, NF; and B(i) are generally unchanged, while
evolution is carried out to change C;, which means that the task of
evolution is to find the optimal solution g” € G by evolving the node
connections.

In GNP, since the predefined and unchanged start node without
function is only used to determine the first node to be executed,
the start node and its branch are not considered in the formulation
of G for simplicity.

2 v; and x; denote the state-value and continuous variables of node i, which will
be described in the next section. They are not included in the discrete PMBGNP.

Please cite this article in press as: X. Li, K. Hirasawa, Continuous probabilistic model building genetic network programming using
reinforcement learning, Appl. Soft Comput. J. (2014), http://dx.doi.org/10.1016/j.as0c.2014.10.023



dx.doi.org/10.1016/j.asoc.2014.10.023

Download English Version:

https://daneshyari.com/en/article/6905482

Download Persian Version:

https://daneshyari.com/article/6905482

Daneshyari.com


https://daneshyari.com/en/article/6905482
https://daneshyari.com/article/6905482
https://daneshyari.com

