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a  b  s  t  r  a  c  t

In  recent  years,  particle  swarm  optimization  (PSO)  has  extensively  applied  in  various  optimization  prob-
lems because  of its  simple  structure.  Although  the  PSO  may  find  local  optima  or exhibit  slow  convergence
speed  when  solving  complex  multimodal  problems.  Also,  the  algorithm  requires  setting  several  param-
eters,  and  tuning  the  parameters  is  a  challenging  for some  optimization  problems.  To  address  these
issues,  an  improved  PSO  scheme  is proposed  in  this  study.  The  algorithm,  called  non-parametric  particle
swarm  optimization  (NP-PSO)  enhances  the global  exploration  and  the  local  exploitation  in PSO with-
out  tuning  any  algorithmic  parameter.  NP-PSO  combines  local  and  global  topologies  with  two  quadratic
interpolation  operations  to increase  the  search  ability.  Nineteen  (19)  unimodal  and  multimodal  nonlin-
ear benchmark  functions  are  selected  to  compare  the  performance  of  NP-PSO  with  several  well-known
PSO  algorithms.  The  experimental  results  showed  that  the proposed  method  considerably  enhances  the
efficiency  of  PSO  algorithm  in  terms  of  solution  accuracy,  convergence  speed,  global  optimality,  and
algorithm  reliability.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

PSO [1] is a population-based algorithm inspired by the social
behavior of bird flocking or fish schooling. In the algorithm, a mem-
ber in the swarm, particle, represents a potential solution which is
a point in the search space. The global optimum is regarded as the
location of food. Each particle adjusts its flying direction accord-
ing to the best experiences obtained by itself and the swarm in the
solution space. The algorithm has a simple concept and is easy to
implement. Hence, it has received much more attention to solve
real-world optimization problems [2–7], nevertheless, PSO may
easily get trapped in local optima and shows a slow convergence
rate when solving the complex and high dimensional multimodal
objective functions [8].

A number of variant PSO algorithms have been proposed in
the literature to overcome the problems. The algorithms have
improved the performance of PSO in different ways using various
types of topologies, selecting parameters, combining with other
search techniques and so on.

A local (ring) topological structure PSO (LPSO) [9] and Von Neu-
mann topological structure PSO (VPSO) [10] were proposed by
Kennedy and Mendes to avoid trapping into local optima. Accord-
ing to Kennedy [9,11], PSO with a small neighborhood might have
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a better performance on complex problems, while PSO with a large
neighborhood would perform better on simple problems. Sugan-
than [12] applied a dynamically adjusted neighborhood where the
neighborhood of a particle gradually increases until it includes
all particles. Dynamic multi-swarm PSO (DMS-PSO) [13] was sug-
gested by Liang and Suganthan where the neighborhood of a
particle gradually increases until it includes all particles. Hu and
Eberhart [14] applied a dynamic neighborhood where m nearest
particles in the performance space is chosen to be its new neigh-
borhood in each generation. Mendes et al. [15] presented the fully
informed particle swarm (FIPS) algorithm that uses the informa-
tion of entire neighborhood to guide the particles for finding the
best solution. Parsopoulos and Vrahatis combined the global and
local versions together to form the unified particle swarm opti-
mizer (UPSO) [16]. Gao et al. [17] used PSO with a stochastic search
technique and chaotic opposition-based population initialization to
solve complex multimodal problems. The algorithm, CSPSO, finds
new solutions in the neighborhoods of the previous best positions
to escape from local optima.

The fitness-distance-ratio-based PSO (FDR-PSO) was introduced
by Peram et al. [18]. In the algorithm, each particle moves toward
nearby particle with higher fitness value. Liang et al. [8] developed
comprehensive learning particle swarm optimization (CLPSO) that
focused on avoiding the local optima by encouraging each particle
to learn its behavior from other particles on different dimensions.

In another research, a selection operator was  firstly proposed
for PSO by Angeline [19]. Other researchers applied apart from
crossover [20], and mutation [21] operations from GA into PSO. An
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adaptive fuzzy particle swarm optimization (AFPSO) [22] proposed
to adjust the parameters in PSO based on fuzzy inferences.

Beheshti et al. proposed the median-oriented PSO (MPSO) [23]
based on the information from the median particle. Also, they
introduced centripetal accelerated PSO (CAPSO) [24] according to
Newton’s laws of motion to accelerate the learning procedure and
convergence rate of optimization problems. Other variant PSO algo-
rithms have been recently developed based on different techniques
[25–28].

Although the aforementioned algorithms have obtained satis-
factory results in many optimization problems; there are still some
disadvantages. For example, LPSO presents a slow convergence rate
in unimodal functions [23,24]. CLPSO is not a good choice for solving
unimodal problems [8]. Also, the majority of the algorithms require
several parameters to tune, and setting the parameters can be a
challenging for optimization problems. Moreover, some of the algo-
rithms have a better performance than the PSO but their structures
are not as simple as PSO.

To overcome the drawbacks, this study introduces a non-
parametric particle swarm optimization (NP-PSO) algorithm. The
proposed method performs a global and local search over the search
space with a fast convergence speed using two quadratic interpola-
tion operations. There is no need to tune any algorithmic parameter
in the NP-PSO algorithm. It means that all PSO parameters are
removed in the proposed algorithm.

The remainder of this study is organized as follows. In Section
2, a brief overview of PSO is provided. The proposed algorithm, NP-
PSO in more details is described in Section 3. In Section 4, NP-PSO is
used to solve several unimodal and multimodal benchmark func-
tions and its performance is compared with some PSO algorithms in
the literature. Finally, conclusions and further research directions
are presented in Section 5.

2. Particle swarm optimization (PSO)

PSO is a population-based meta-heuristic algorithm that applies
two approaches of global exploration and local exploitation to find
the optimum solution. The exploration is the ability of expand-
ing search space, where the exploitation is the ability of finding
the optima around a good solution. The algorithm is initialized by
creating a swarm, i.e., population of particles (N), with random
positions. Every particle is shown as a vector, (�Xi, �Vi, �Pbesti

), in a

D-dimensional search space where �Xi and �Vi are the position and
velocity, respectively. �Pbesti

is the personal best position found by
the ith particle:

�Xi = (x1
i , x2

i , . . .,  xD
i ) for i = 1, 2, . . .,  N. (1)

�Vi = (v1
i , v2

i , . . .,  vD
i ) for i = 1, 2, . . .,  N. (2)

�Pbesti
= (pbest1

i , pbest2
i , . . .,  pbestD

i ) for i = 1, 2, . . .,  N. (3)

The best position obtained by the swarm, �Pg , is obtained to
update the next particle velocity.

�Pg = (p1
g, p2

g, . . .,  pD
g ). (4)

Based on �Pbesti
and �Pg , the next velocity and position of the ith

particle are computed using (5) and (6), respectively as follows:

vd
i (t + 1) = w × vd

i (t) + C1 × rand1 × (pbestd
i (t) − xd

i (t))

+ C2 × rand2 × (pd
g(t) − xd

i (t)), (5)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1),  (6)

where vd
i
(t + 1) and vd

i
(t) are the next and current velocity of the ith

particle respectively. w is inertia weight, C1 and C2 are acceleration

coefficients, rand1 and rand2 are random numbers in the interval
[0,1]. xd

i
(t + 1) and xd

i
(t) are the next and current position of the ith

particle.
Also, |vd

i
(t + 1)|  < vmax and vmax is set to a constant bounded

based on the search space bound. In (5), the second and the third
terms are called cognition and social term, respectively. The two
models applied to choose �Pg are known as �Pgbest (for global topol-
ogy) and �Plbest (for local topology) models. In global topology, the
position of each particle is affected by the best-fitness particles of
the entire population in the search space; in the local model, each
particle is influenced by the best-fitness particles in its neighbor-
hood. In this study, the local topology is called LPSO.

A large value of w is more appreciate of the global explo-
ration; while a small value facilities a local exploitation. Shi and
Eberhart [29] proposed a linearly decreasing inertia weight. They
also designed fuzzy methods to nonlinearly change the inertia
weight [30]. Ratnaweera et al. [31] proposed the HPSO-TVAC algo-
rithm, which used linearly time-varying acceleration coefficients.
In the algorithm, a larger C1 and a smaller C2 set at the beginning,
gradually reversing their relationship throughout the search. By
analyzing the convergence behavior of the PSO, a PSO variant with
a constriction factor was presented by Clerc and Kennedy [32] as
follows:

� = 2∣∣∣2 − ϕ −
√

ϕ2 − 4ϕ
∣∣∣ , (7)

ϕ = C1 + C2 = 4.1, (8)

vd
i (t + 1) = �

[
vd

i (t) + C1 × rand1 × (pbestd
i (t) − xd

i (t))

+C2 × rand2 × (pd
g(t) − xd

i (t))
]

, (9)

where C1 and C2 are set to 2.05. � is mathematically equivalent to
the inertia weight (w)  as Eberhart and Shi pointed out [33].

3. NP-PSO – The proposed method

NP-PSO tends to overcome the disadvantages of PSO by avoid-
ing local optima, accelerating the convergence speed and removing
algorithmic parameters. According to [23,24], PSO has shown a
better performance than LPSO in unimodal problems and LPSO pro-
vides a good results in multimodal. Hence, both local and global
topologies are applied in NP-PSO. Also, the search of new area is

Table 1
Dimensions, ranges, and global optimum values of test functions used in the
experiments.

Test function Dimension (n) [Range]n Xopt Fopt

F1(x) 10/30 [−100,100]n 0 0
F2(x) 10/30 [−10,10]n 0 0
F3(x) 10/30 [−100,100]n 0 0
F4(x) 10/30 [−5,5]n 1 0
F5(x) 10/30 [−600,600]n 0 0
F6(x) 10/30 [−5.12,5.12]n 0 0
F7(x) 10/30 [−5.12,5.12]n 0 0
F8(x) 10/30 [−100,100]n 0 0
F9(x) 10/30 [−10,10]n 0 0
F10(x) 10/30 [−32.767,32.767]n 0 0
F11(x) 10/30 [−100,100]n 0 300
F12(x) 10/30 [−100,100]n 0 0
F13(x) 10/30 [−32.767,32.767]n 0 0
F14(x) 10/30 [−5,5]n 1 0
F15(x) 10/30 [−100,100]n 0 1300
F16(x) 10/30 [−100,100]n 0 2100
F17(x) 10/30 [−100,100]n 0 2800
F18(x) 10/30 [−100,100]n 0 2900
F19(x) 10/30 [−100,100]n 0 3000
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