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a  b  s  t  r  a  c  t

The  development  of algorithms  for tackling  continuous  optimization  problems  has  been  one of the  most
active  research  topics  in soft  computing  in  the  last decades.  It  led  to many  high  performing  algorithms
from  areas  such  as evolutionary  computation  or swarm  intelligence.  These  developments  have  been  side-
lined by  an  increasing  effort  of  benchmarking  algorithms  using  various  benchmarking  sets  proposed  by
different  researchers.

In  this  article,  we explore  the  interaction  between  benchmark  sets,  algorithm  tuning,  and  algorithm  per-
formance.  To do  so,  we compare  the  performance  of  seven  proven  high-performing  continuous  optimizers
on  two  different  benchmark  sets:  the  functions  of  the  special  session  on  real-parameter  optimization  from
the  IEEE  2005  Congress  on  Evolutionary  Computation  and  the  functions  used  for  a recent  special  issue  of
the  Soft  Computing  journal  on  large-scale  optimization.  While  one  conclusion  of  our  experiments  is that
automatic  algorithm  tuning  improves  the  performance  of  the  tested  continuous  optimizers,  our  main
conclusion  is that  the  choice  of the  benchmark  set  has a  much  larger impact  on  the ranking  of the  com-
pared  optimizers.  This  latter conclusion  is true whether  one  uses  default  or tuned  parameter  settings.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Continuous optimization problems arise in many important
design and control problems in areas such as engineering, telecom-
munications, or computer science. In many cases, the resulting
problems have to be treated as black-box problems, where no
explicit mathematical formulation of the problem is available and,
therefore, derivatives may  not be computed [9]. Often, such prob-
lems have multiple optima, correlated variables and non-linear
objective functions, making their solution very hard. Thus, as an
alternative to classical continuous optimization techniques, direct-
search (or also called derivative-free) methods have emerged [9].

An important source of direct-search methods is the area of soft
computing. Many techniques such as evolutionary computation
[4], memetic algorithms [44], ant colony optimization [12], parti-
cle swarm optimization [27], differential evolution [52] or artificial
bee colonies [25] have been at the core of recent advancements
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when developing optimization techniques. All these techniques
have been applied to tackle (black-box) continuous optimization
problems. Such algorithms have been developed starting more than
four decades ago and thousands of articles have been published
providing new algorithmic ideas or algorithm designs and analyses
of such algorithms.

This proliferation of algorithmic techniques and variants
thereof, has made it difficult to identify which algorithms
contribute to define the state-of-the-art. To address some
shortcomings in the evaluation of (nature-inspired) continuous
optimizers, several benchmarking efforts have been undertaken.
Early benchmarking efforts such as the first international contest
on evolutionary optimization [5] in 1996 had some but little impact.
Later efforts, however, have been followed much more strongly,
possibly because the number of available algorithms has grown
very much. A noteworthy example is the special session on real
parameter optimization of the 2005 IEEE Congress on Evolution-
ary Computation (CEC’05) [53]. It proposed a set of 25 benchmark
problems and identified the covariance matrix adaptation evolu-
tion strategy (CMA-ES) [16] with occasional restarts with increasing
population size (IPOP-CMA-ES) [1] as the best performing algo-
rithm on this CEC’05 benchmark set. The impact this special session
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had and still has is illustrated by the more than 750 citations
the technical report defining the benchmark functions received in
google scholar by December 2013. Other efforts include a special
session on large scale global optimization held at the IEEE CEC’08
conference. The benchmark set of this special session was  later
extended in various successor competitions. In particular, the spe-
cial issue on large scale continuous optimization problems of the
Soft Computing journal [40] extended this benchmark set to com-
prise a total of 19 freely scalable benchmark functions; we  refer
to this benchmark set in the following as the SOCO benchmark
set. In this special issue, a memetic algorithm that combines a
local search algorithm with a differential evolution algorithm in the
multiple offspring (MOS) framework [30] was the best-performing
algorithm; we refer to this algorithm as MOS  in what follows.

If one takes a closer look into the results on these two  benchmark
sets, an interesting difference arises. In fact, on the SOCO bench-
mark set, IPOP-CMA-ES, the winner of the CEC’05 benchmarking
competition, was used as an algorithm to set a performance base-
line and the final winner, MOS, performed significantly better than
IPOP-CMA-ES. This result reminds of an observation made by Whit-
ley et al. [56], p. 245:

“Test functions are commonly used to evaluate the effectiveness of
different search algorithms. However, the results of evaluation are
as dependent on the test problems as they are on the algorithms
that are the subject of comparison.”

Paraphrasing this statement in terms of the current benchmark
sets, it would say that the choice of the benchmark set has a strong
impact on the final ranking of the algorithms tested. Unfortunately,
MOS  was not tested on the CEC’05 benchmark set and it is therefore
unclear whether it would perform better than IPOP-CMA-ES also on
the CEC’05 benchmark set.

One goal of this article is to examine the impact the choice
of the benchmark set has on the relative performance of current
high performance continuous optimizers. We  do so by choosing a
number of algorithms that are derived from different search tech-
niques and that have shown very good performance on at least
one of the CEC’05 and SOCO benchmark sets. In particular, we
include the already mentioned IPOP-CMA-ES [1] and MOS  [30]
algorithms as winners of the two benchmark competitions. In addi-
tion, we selected the following algorithms. MA-LSCh-CMA [42] is
a memetic algorithm for continuous optimization based on local
search chains; it was reported very high performance on the CEC’05
benchmark set. SaDE [48] is a self-adaptive differential evolution
algorithm, which received the 2012 IEEE Transactions on Evolution-
ary Computation Outstanding Paper Award; IPSOLS [43] and IABCLS
[3] are particle swarm optimization and artificial bee colony algo-
rithms, which obtained the best performance in their respective
fields on the SOCO benchmark set; UACOR [37] is a configurable
framework of ant colony optimization for continuous domains
that shows improved performance when compared to IACOR [33],
which was the so far best performing ant colony optimization
algorithm for continuous optimization on the above mentioned
benchmark sets. Although some researchers have compared con-
tinuous optimizers from different metaheuristics [2,18,14,49], the
aforementioned start-of-the-art continuous optimizers have not
been evaluated together in the literature.

A second goal of this article is to examine the impact specific
choices on the parameter settings have on the evaluation of contin-
uous optimizers. Typically, parameter settings are defined by the
algorithm designers based on preliminary experiments and con-
sidering a specific set of test problems. This may  lead to implicit
biases in the parameter tuning toward specific test functions or
benchmark sets and an uneven effort in parameter tuning. Biases
in algorithm tuning and uneven tuning effort are two problem-
atic issues when comparing algorithms as one algorithm may  seem

superior to another one only because its parameters are more fine-
tuned for a specific benchmark set. As an alternative, one may
rely on automatically tuned parameter settings through the usage
of automatic algorithm configuration techniques [7,23,24,39,46].
In fact, experience with these techniques has shown that often
they are able to find improved parameter settings over manually
tuned default settings and to make parameter tuning more efficient
[7,23,22,24]. Therefore, here we  compare the continuous optimiz-
ers using their default settings and based on parameters that are
tuned by using an automatic algorithm configuration tool, irace
[7,39], to give an unbiased comparison.

In a nutshell, the experimental results that we obtain indicate
that (i) all algorithms may  profit from the automatic algorithm
configuration, (ii) the benchmark sets have a major impact on the
ranking of the algorithms, and (iii) some algorithms exhibit poor
scaling behavior with increasing dimension. We  believe that these
results also show that future benchmarking efforts need to consider
larger and more systematically varied sets of benchmark prob-
lems and, in particular, the evaluation of the continuous optimizers
on more benchmark problems stemming from real applications is
desirable to steer future research efforts.

The article is organized as follows. Section 2 describes the
seven continuous optimizers we  test. Section 3 gives more back-
ground on automatic algorithm configuration and tuning. Next,
Section 4 describes the benchmark sets and Section 5 the experi-
mental setups. In Sections 6–8, we  evaluate the optimizers using
default and tuned parameters on the CEC’05 and SOCO benchmark
sets. We  end the article with a discussion of the obtained results
and conclude in Section 9.

2. The tested continuous optimizers

In this section, we concisely introduce the seven continuous
optimizers that we compare and justify their choice. Since these
optimizers are well described in the literature, we refer to the orig-
inal articles for their detailed description to keep the present article
short.1

2.1. IPOP-CMA-ES

CMA-ES [16] is a (�,  �)-evolution strategy that samples at each
iteration new solutions based on a multivariate normal distribu-
tion. It adapts the covariance matrix of a normal search distribution
during the execution to lead the sampling to the most promising
part of the search space. Its design makes the algorithm invariant
to the scaling of the evaluation function and to rotations of the vari-
able’s correlation. CMA-ES may  be seen as a stochastic local search
technique; IPOP-CMA-ES [1] provides an iterative restart scheme
once CMA-ES is deemed to stagnate and at each restart increases
the population size. It obtained the best performance among all the
candidates in the special session on real parameter optimization of
CEC’05 [53] and is since then seen as a state-of-the-art continuous
optimizer.

Following [36], we  consider seven parameters (a, b, c, d, e,
f, g) for tuning. These parameter control some of the formulas
that determine IPOP-CMA-ES’s search behavior. In particular, these
parameters are used in the following equations. The initial popula-
tion size is � = 4+ � a ln(D) �, where D is the number of dimensions
of the function to be optimized. The number of parent solutions
is � =� �/b �. The initial step-size is �(0) = c(B − A), where [A, B]D is
the initial search interval. The population size is multiplied by a

1 The list of the parameters, their default and tuned values and their domains
considered for tuning are given in Tables 2 and 3.
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