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a  b  s  t  r  a  c  t

In this  study,  an  improved  magnetic  charged  system  search  (IMCSS)  is  presented  for  optimization  of  truss
structures.  The  algorithm  is  based  on magnetic  charged  system  search  (MCSS)  and  improved  scheme  of
harmony  search  algorithm  (IHS).  In IMCSS  some  of  the  most  effective  parameters  in the convergence  rate
of the  HS  scheme  have  been  improved  to achieve  a better  convergence,  especially  in the  final  iterations
and  explore  better  results  than  previous  studies.  The  IMCSS  algorithm  is  applied  for  optimal  design
problem  with both  continuous  and  discrete  variables.  In comparison  to the results  of  the previous  studies,
the  efficiency  and  robustness  of the  proposed  algorithm  in fast  convergence  and  achieving  the optimal
values  for  weight  of  structures,  is demonstrated.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In the last three decades, many meta-heuristic algorithms have
been proposed and applied for optimization of structures. Every
meta-heuristic method consists of a group of search agents that
explore the feasible region based on both randomization and
some specified rules. The rules are usually inspired by natural
phenomena laws. Genetic algorithms (GA) proposed by Holland [1]
and Goldberg [2] are inspired by Darwin’s theory about biological
evolutions. Niche Hybrid Parallel Genetic Algorithm (NHPGA) pro-
posed by Wei  et al. [3], Generative Algorithms (GA) by Allison et al.
[4], Particle swarm optimization (PSO) proposed by Eberhart and
Kennedy [5] simulates the social behaviour, and it is inspired by
the movement of organisms in a bird flock or fish school. Ant colony
optimization (ACO) formulated by Dorigo et al. [6] imitates foraging
behaviour of ant colonies. Many other physical-inspired algorithms
such as simulated annealing (SA) proposed by Kirkpatrick et al.
[7], Harmony Search (HS) presented by Geem et al. [8], Gravita-
tional Search Algorithm (GSA) proposed by Rashedi et al. [9], Big
Bang–Big Crunch algorithm (BB–BC) proposed by Erol and Eksin
[10] which improved by Kaveh and Talatahari [11], Bat-Inspired
Algorithm proposed by Yang [12], Ray Optimization (RO) devel-
oped by Kaveh and Khayatazad [13], Krill Herd (KH) presented by
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Gandomi and Alavi [14], Dolphin Echolocation method by Kaveh
and Farhoudi [15], Colliding Bodies Optimization (CBO) by Kaveh
and Mahdavi [16], and Interior search algorithm (ISA) by Gandomi
[17], in recent years.

A new meta-heuristic algorithm has been proposed recently, by
Kaveh and Talatahari which is called Charged System Search (CSS)
[18]. The CSS algorithm is based on the Coulomb and Gauss laws
from physics and the governing laws of motion from the Newto-
nian mechanics. This algorithm can be considered as a multi-agent
approach, where each agent is a Charged Particle (CP). Each CP is
considered as a charged sphere with a specified radius, having a
uniform volume charge density which can insert an electric force
to the other CPs.

After a while the CSS algorithm was modified to Magnetic
Charged System Search (MCSS) by Kaveh et al. [19]. This algorithm
utilizes the governing laws for magnetic forces and includes mag-
netic forces in addition to electrical forces, so the movements of
CPs due to the total force (Lorentz force) are determined using
Newtonian mechanical laws.

In this paper, an improved magnetic charged system search
(IMCSS) is proposed for optimization of some truss structures
as the well-known benchmark problems, in order to compari-
son the efficiency of the IMCSS algorithm with recently presented
meta-heuristic algorithms. In this algorithm, an improved har-
mony search scheme (HIS) is utilized and some of the most
effective parameters in the convergence rate of the algorithm are
improved.
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In a recently presented research by the authors, optimal design
of double layer barrel vaults has been proposed, in which a 384-bar
barrel vault and a 693-bar braced barrel vault have been optimized
via the IMCSS algorithm [20].

The authors have also introduced an optimization approach
(IMCSS-OAPI) for the problem of simultaneous shape-size opti-
mization of large-scale barrel vault frames, which deals with the
interface between the IMCSS as the optimization algorithm and
SAP2000 as the structural analysis software through the open appli-
cation programming interface (OAPI) [21]. In this work a 173-bar
and a 292-bar single-layer barrel vault frame have been optimized.

The present paper is organized as follows: in Section 2, the state-
ment of the optimization problem is expressed and formulated.
CSS and MCSS algorithm are reviewed in Section 3. In Section 4, the
improved form of MCSS algorithm is introduced and also its discrete
version is described. Section 5 contains several illustrative exam-
ples with continuous and discrete variables to determine whether
the efficiency of the new algorithm could be enough, and finally in
Section 6, some concluding remarks are derived.

2. Statement of the optimization problem

The principal objective of size optimization process is aimed at
achieving the optimum values for member cross-sectional areas of
structure Ai in order to minimize the structural weight W and simul-
taneously satisfying the constraints that the optimization problem
imposes. Hence, the problem of size optimization of truss structures
can be expressed as:

Find X = [x1, x2, x3, . . .,  xn]

to minimize Mer(X) = fpenalty(X) × W(X)

subject to �min < �i < �max i = 1, 2, . . .,  nm

ımin < ıi < ımax i = 1, 2, . . .,  nn

(1)

where X is the vector containing the design variables; for a dis-
crete optimum design problem, the variables xi are selected from an
allowable set of discrete values; n is the number of member groups;
Mer(X) is the merit function; W(X) is the cost function, which
is taken as the weight of the structure; fpenalty(X) is the penalty
function which results from the violations of the constraints cor-
responding to the response of the structure; nm is the number of
members forming the structure; nn is the number of nodes; �i and
ıi are the stress and nodal displacements, respectively; min  and
max  mean the lower and upper bounds of constraints, respectively.
The cost function can be expressed as:

W(X) =
nm∑
i=1

�i · Ai · Li (2)

where �i, Li, and Ai are the material density, length and the cross-
sectional area of member i, respectively.

The penalty function can be defined as:

fpenalty(X) =
(

1 + ε1 ·
np∑
i=1

(�k
�(i) + �k

ı(i))

)ε2

, (3)

where np is the number of multiple loadings. In this paper ε1 is
taken as unity and ε2 is set to 1.5 in the first iterations of the search
process, but gradually it is increased to 3 [22]. �k

� is the summation
of stress penalties and �k

ı
is the summation of nodal displacement

penalties for kth charged particle which mathematically expressed
as:

�� =
nm∑
i=1

max
(∣∣∣�i

�̄i

∣∣∣− 1, 0
)

, (4)

�ı =
nn∑
i=1

max

(∣∣∣∣ıi

ı̄i

∣∣∣∣− 1, 0

)
, (5)

where �i, �̄i are the stress and allowable stress in member i, respec-
tively, and ıi, ı̄i are the displacement of the joints and the allowable
displacement, respectively.

3. Introduction to CSS and MCSS

The CSS algorithm has been proposed by Kaveh and Talathari
[18] for optimization of structures. This meta-heuristic optimiza-
tion algorithm takes its inspiration from the physic laws governing
a group of charge particles (CP). These CPs are sources of the elec-
tric fields, and each CP can exert electric force on other CPs. The
movement of each CP due to the electric force can be determined
using the Newtonian mechanic laws.

In physics, it has been shown that when a charged particle
moves, produces a magnetic field. This magnetic field can exert
a magnetic force on other CPs. Thus, for considering this force in
addition to electric force, the CSS algorithm is modified to MCSS
algorithm by Kaveh et al. The MCSS algorithm can be summarized
as follows [19]:

Level 1. Initialization
Step 1: Initialization. Initialize CSS algorithm parameters; the

initial positions of CPs are determined randomly in the search space

x(0)
i,j

= xi,min + rand · (xi. max − xi,min), i = 1, 2, . . .,  n. (6)

where x(0)
i,j

determines the initial value of the ith variable for the jth
CP; xi,min and xi,max are the minimum and the maximum allowable
values for the ith variable; rand is a random number in the inter-
val [0,1]; and n is the number of variables. The initial velocities of
charged particles are set to zero

v(0)
i,j

= 0, i = 1, 2, ..., n. (7)

The magnitude of the charge is defined as follows:

qi = fit(i) − fitworst
fitbest − fitworst

,  i = 1, 2, . . ., N. (8)

where fitbest and fitworst are the best and the worst fitness of all
particles, respectively; fit(i) represents the fitness of the agent i; and
N is the total number of CPs. The separation distance rij between
two charged particles is calculated as:

rij = ||Xi − Xj||
||(Xi + Xj)/2 − Xbest|| + ε

, (9)

where Xi and Xj are the positions of the ith and jth CPs, Xbest is the
position of the best current CP, and ε is a small positive number to
avoid singularities.

Step 2. CP ranking. Evaluate the values of the fitness function for
the CPs, compare with each other and sort them in an increasing
order.

Step 3. CM creation. Store CMS  number of the first CPs and their
related values of the objective function in the CM (based on CMS
size).

Level 2: Search
Step 1: Force determination.
The probability of the attraction of the ith CP by the jth CP is

expressed as:

pij =

⎧⎨
⎩ 1

fit(i) − fitbest
fit(j) − fit(i)

> rand or fit(j) > fit(i),

0 else.

(10)

where rand is a random number uniformly distributed in the range
of (0,1). The resultant electrical force FE,j acting on the jth CP can be
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