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a  b  s  t  r  a  c  t

Research  on  intelligent  optimization  is  concerned  with  developing  algorithms  in  which  the  optimization
process  is  guided  by an  “intelligent  agent”,  whose  role  is  to deal with  algorithmic  issues  such as  param-
eters  tuning,  adaptation,  and  combination  of  different  existing  optimization  techniques,  with  the  aim of
improving  the  efficiency  and  robustness  of the optimization  process.  This  paper  proposes  an  intelligent
optimization  approach  to solve  the  minimum  labelling  spanning  tree  (MLST)  problem.  The  MLST  problem
is  a combinatorial  optimization  problem  where,  given  a connected,  undirected  graph  whose  edges are
labelled  (or  coloured),  the  aim  is to find  a spanning  tree  whose  edges  have  the  smallest  number  of distinct
labels  (or colours).  In recent  work,  the  MLST  problem  has  been  shown  to be NP-hard  and  some  effective
metaheuristics  have  been  proposed  and  analysed.  The  intelligent  optimization  algorithm  proposed  here
integrates  the  basic  variable  neighbourhood  search  heuristic  with  other  complementary  approaches  from
machine  learning,  statistics  and  experimental  soft  computing,  in  order  to produce  high-quality  perfor-
mance  and  to  completely  automate  the  resulting  optimization  strategy.  We  present  experimental  results
on randomly  generated  graphs  with  different  statistical  properties,  and  demonstrate  the  implementation,
the  robustness,  and  the  empirical  scalability  of  our  intelligent  local  search.  Our  computational  experi-
ments  show  that  the  proposed  strategy  outperforms  heuristics  recommended  in the  literature  and  is able
to obtain  high  quality  solutions  quickly.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Today a wide range of metaheuristic methods for the solution
of relevant combinatorial problems have steadily gained success.
The practical challenges that the Operations Research commu-
nity needs to face for the design of heuristic solution strategies
are technical and scientific issues regarding the efficient tuning,
adaptation, combination and hybridization of the different existing
techniques [1,2]. The potential in terms of efficiency or robust-
ness of the obtained metaheuristics is large, but the task is also
quite complex. First, the performance of these algorithms depends
on a number of components and parameters which need to be
tuned by the user through a lengthy trial and error process every
time the algorithm has to face different instances of the consid-
ered problems [3]. Second, the scientific intent consists also in
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comprehending the contribution of the different components
with respect to the whole algorithm and at discerning the
basic principles for achieving successful metaheuristics [1,2].
Consequently, there is a great interest in developing intelligent
optimization algorithms which make use of mechanisms from
machine learning, statistics and experimental soft computing, inte-
grate exact techniques of mathematical programming, hybridize
existing metaheuristics, in order to produce effective optimiza-
tion strategies with high-quality performance and with completely
automated parameters tuning processes [4,5,1]. In particular, the
present paper considers probability-based components within
self-tuned local search to solve the minimum labelling span-
ning tree (MLST) problem with state-of-the-art results. These
algorithmic components allows the local search to achieve a
proper balance of diversification (exploration) and intensification
(exploitation) during the search process, a fundamental objective
for any effective heuristic solution approach. The diversification
capability of a metaheuristic refers to its aptitude of explor-
ing thoroughly different zones of the search space in order to
identify promising areas. When a promising area is detected,
the metaheuristic needs to exploit it intensively to find the
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relative local-optimum, but at the same time without wast-
ing excessive computational resources. This is referred as the
intensification capability of the metaheuristic. Finding a good
balance between diversification and intensification is indeed an
essential task for the proper effectiveness of a metaheuristic
[6,7,2].

In the MLST problem we are given an undirected, labelled (or
coloured) graph as input, with a label assigned to one or more
edges, but with each edge having only one label allocated, and
the aim is to find a spanning tree of the graph having the mini-
mum  overall number of labels [8]. The MLST problem has many
real-world applications in different fields, such as in data compres-
sion [9], telecommunications network design [10], and multimodal
transportation systems [11]. For example, in multimodal trans-
portation systems there are often circumstances where it is needed
to guarantee a complete service between the terminal nodes of
the network by using the minimum number of provider com-
panies [12]. This situation can be modelled as a MLST problem,
where each edge of the input graph is assigned a label, denot-
ing a different company managing that link, and one wants to
obtain a spanning tree of the network using the minimum num-
ber of labels. This spanning tree will reduce the construction cost
and the overall complexity of the network. A practical example
in this context is given by multimodal transportation networks
of large territories, from regions to states, or even continents,
during humanitarian crisis events like, for example, volcanic erup-
tions, terrorist threats, floods, tsunamis, etc [13]. In these very
delicate crisis management situations, amongst different types of
human intervention, it is also necessary to reorganize dynami-
cally the entire transportation network of the damaged area, taking
into account the upcoming inaccessible or forbidden zones, and
guaranteeing a minimal working transport service among main
cities, hospitals, airports, principal way outs, and others, with
the minimum number of different transportation carriers and
companies.

It is possible to express the MLST problem in a more formal way
as a network or graph problem as follows [14]:

Definition 1.1. Minimum labelling spanning tree problem:

GIVEN: A labelled connected undirected graph G = (V, E, L), where
V is the set of nodes, E is the set of edges, and L is the set of labels.
GOAL: Find a spanning tree T of G such that min|LT|, where LT is
the set of labels used in T.

The left graph of Fig. 1 is an example of an input graph, whose
MLST solution is shown on the right.

It has been demonstrated by Xiong et al. [15] that any spanning
tree of a feasible optimal solution for the MLST problem is a min-
imum labelling spanning tree. A feasible solution is defined as a
set of labels, C ⊆ L, such that all edges with labels in C represent a
connected subgraph of G and span all the nodes in G. If C is a fea-
sible solution, then any spanning tree of C has at most |C| labels.
Therefore to solve the MLST problem, it is easier to get firstly a
feasible solution with the least number of labels, and then to use
any polynomial time algorithm already known in the literature to
extract from the obtained feasible solution a spanning tree with the
minimum number of labels [15].

The structure of the paper is as follows. In Section 2 the MLST
algorithms in the literature are reviewed. In particular this section
will give the details of an exact method [14], and those of the
heuristics recommended in the literature [14]: greedy randomized
adaptive search procedure (GRASP) and variable neighbourhood
search (VNS). Section 3 describes the intelligent algorithm that
we propose, which derives from the basic VNS heuristic and
is extended by other complementary approaches in order to

improve the effectiveness and robustness of the optimization
process. Section 4 contains a computational analysis and statistical
evaluation of the results. Finally, our conclusions are described in
Section 5. For a survey on the basic concepts of metaheuristics and
combinatorial optimization, the reader is referred to [6,16,7,1].

2. MLST algorithms in the literature

Chang and Leu [8] first introduced the MLST problem, along
with the proof of its NP-hard complexity. They also presented the
Maximum Vertex Covering Algorithm (MVCA), a polynomial time
heuristic for the problem successively refined by Krumke and Wirth
[17]. Starting from an empty graph, MVCA iteratively adds at ran-
dom unused labels to the partial solution, by greedily minimizing
the number of connected components at each step. The procedure
continues until only one connected component is left, i.e. when only
a connected subgraph is obtained.

Krumke and Wirth [17] also proved that MVCA yields a solu-
tion with a value no greater than (1 + 2 log n) times optimal, where
n is the total number of nodes. Later, Wan  et al. [18] obtained
a better bound for the greedy algorithm introduced by Krumke
and Wirth [17]. The algorithm was shown to be a (1 + log(n − 1))-
approximation for any graph with n nodes (n > 1).

Brüggemann et al. [19] used a different approach; they applied
local search techniques based on the concept of j-switch neigh-
bourhoods to a restricted version of the MLST problem. In addition,
they proved a number of complexity results and showed that if each
label appears at most twice in the input graph, the MLST problem
is solvable in polynomial time.

Xiong et al. [20] derived tighter bounds than those proposed
by Wan  et al. [18]. For any graph with label frequency bounded
by b, they showed that the worst-case bound of MVCA is the bth-
harmonic number Hb that is: Hb =

∑b
i=1(1/i) = 1 + (1/2) + (1/3) +

· · · + (1/b).
Subsequently, they constructed a worst-case family of graphs

such that the MVCA solution is Hb times the optimal solution.
Since Hb < (1 + log(n − 1)) and b ≤ (n − 1) (since otherwise the sub-
graph induced by the labels of maximum frequency contains a
cycle and one can safely remove edges from the cycle), the tight
bound Hb obtained is, therefore, an improvement on the pre-
viously known performance bound of (1 + log(n − 1)) given by
Wan  et al. [18].

The usual rule of Krumke and Wirth [17] to select the label that
minimizes the total number of connected components at each step,
results in fast and good quality solutions. However, a difficulty
arises when more than one label with same resulting minimum
number of connected components is detected in a specific step.
Since there may  be many labels with this minimum number of
connected components, the results mainly depend on the rule cho-
sen to select a candidate from this set of ties. If the initial label
from this set is chosen, the results are affected by the sorting of the
labels. Therefore, different executions of the algorithm may  result
in different solutions, with a slightly different number of labels.

Several other heuristic approaches to the MLST problem have
been proposed in the literature. For example, Xiong et al.[15] pre-
sented a Genetic Algorithm outperforming MVCA in most cases.
Subsequently, Cerulli et al. [21] applied to the MLST problem the
Pilot Method, which is a greedy heuristic developed by Voß et al.
[22]. Considering different sets of instances of the MLST problem,
Cerulli et al. [21] compared this method with other metaheuristics:
Tabu Search, Simulated Annealing, and a variable neighbourhood
search attempt. Their Pilot Method obtained the best results in
most of the cases. It generated high-quality solutions to the MLST
problem, but running times were quite large.

Xiong et al. [23] implemented modified versions of MVCA focus-
ing on the initial label added. For example, after the labels were
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