
Applied Soft Computing 25 (2014) 118–128

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

Automatic abstraction controller in reinforcement learning agent via
automata

Seyed Sajad Mousavi ∗, Behzad Ghazanfari, Nasser Mozayani,
Mohammad Reza Jahed-Motlagh
School of Computer Engineering, Iran university of Science and Technology, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 1 November 2013
Received in revised form 17 July 2014
Accepted 24 August 2014
Available online 27 September 2014

Keywords:
Reinforcement learning
Hierarchical reinforcement learning
Cluster
Multi-agent learning

a b s t r a c t

Reinforcement learning (RL) for solving large and complex problems faces the curse of dimensions prob-
lem. To overcome this problem, frameworks based on the temporal abstraction have been presented;
each having their advantages and disadvantages. This paper proposes a new method like the strategies
introduced in the hierarchical abstract machines (HAMs) to create a high-level controller layer of rein-
forcement learning which uses options. The proposed framework considers a non-deterministic automata
as a controller to make a more effective use of temporally extended actions and state space clustering.
This method can be viewed as a bridge between option and HAM frameworks, which tries to suggest a
new framework to decrease the disadvantage of both by creating connection structures between them
and at the same time takes advantages of them. Experimental results on different test environments
show significant efficiency of the proposed method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

RL is a branch of machine learning in which the agent must learn
through interaction with the environment. RL has two main unique
features: (1) Learning is based on trial and error, and (2) Signals of
rewards may be delayed. One of the major challenges the scaling
up of reinforcement learning faces with is the well-known “curse
of dimensionality” problem or combinatorial explosion (In dealing
with large environments, the state space grows exponentially).

To cope with the curse of dimensionality, the state space reduc-
tion techniques can be used. In this ways, the original model is
mapped to another model with fewer states. In other words, the
new structural model is modified to obtain an efficient solution so
that the transformed model is an approximate of the main model.
This approach of reinforcement learning has a better ability to deal
with the curse of dimensionality in solving problems and intro-
duces methods such as Monte Carlo, temporal difference backups
and functions approximation. Another approaches use techniques
of aggregation/disaggregation [1]. The method is used in cases
where the system model can be viewed as an interacting set of
tightly coupled subsystems. The solution method is generally an
iterative one in which sub-models are solved, then the obtained

∗ Corresponding author. Tel.: +98 9304054874; fax: +98 21 73225322.
E-mail address: smousavi71@gmail.com (S.S. Mousavi).

results are used to improve the sub-models repetitively until the
optimal convergence is achieved.

Recent attempts to address the challenge of the curse of dimen-
sionality in RL tend to methods based on abstraction which are
indeed based on the aggregation and disaggregation techniques.
Using these techniques leads to hierarchical control architectures
and their associated learning algorithms known as hierarchical
reinforcement learning (HRL). In most cases, hierarchical solutions
provide near optimal solutions in their performance, less cost at
runtime and also at the learning time and required solving space in
comparison with mere RL techniques [2].

HRL is wide and active branch of RL that applies the hierarchical
structure in the state, action and strategy space. Some frameworks
based on HRL use temporal abstraction techniques. Making a
decision at each step is not necessary, but instead the temporally
extended actions (the macro actions) or sub-tasks can be selected
to reach the goal [3]. Indeed, HRL is a general framework for
scaling up RL to problems with large state spaces by using the
task structure (action) to restrict the space of policies. The key
principle considered by HRL is that the development of learning
algorithms does not need to learn a policy from scratch, but
instead it reuses available policies for simpler subtasks (macro)
and uses the divide-and-conquer strategy. HRL models to apply
the temporal abstraction must be able to make use of actions with
variable lengths. A statistical model known as semi-Markov deci-
sion processes (SMDP) is used to perform behaviors with actions
of variable lengths. These works on SMDP approach have led to

http://dx.doi.org/10.1016/j.asoc.2014.08.071
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.08.071
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.08.071&domain=pdf
mailto:smousavi71@gmail.com
dx.doi.org/10.1016/j.asoc.2014.08.071

S.S. Mousavi et al. / Applied Soft Computing 25 (2014) 118–128 119

the development of powerful HRL models, including Hierarchical
Abstraction Machines (HAMs) [4,5], options [3], and MAXQ [6].

The goal of the option approach is to learn global policies,
being given completely partial polices to do subtasks; but HAMs
emphasize on limiting policies that can be performed instead of
developing the actions. In option framework, the set of agents’
actions are increased by produced actions instead of being simpli-
fied or even reduced. In the framework of reinforcement learning
using option, choosing temporally extended actions is too expen-
sive due to their large number of time steps. Now the issue is to
create a smart choice of temporally extended actions to increase
the learning speed.

The main innovation introduced in this paper is the use non-
deterministic automata like HAM as a high-level controller to select
temporally extended actions in low level. The proposed approach
tries to present a framework which uses the capabilities of option
and HAMs, and also reduces the disadvantages of both methods by
building communication structures between them.

Option and HAM frameworks have certain operational features.
Obviously, a structural design based on the two approaches in such
a way that they cover each other’s weaknesses leads to a flexi-
ble structure with high performance. These approaches are strong
methods but, as mentioned before, have some disadvantages the
purpose of this paper is to address.

The rest of the paper is divided into the following sections: Sec-
tion 2 gives a review of the background of the work. Section 3
discusses multi-agent learning. In Section 4, we describe the algo-
rithm and its steps. Section 5 defines a framework of the proposed
method and that how it is used in RL. Section 6 offers some compu-
tational experiments to evaluate the performance of the proposed
algorithms on single-agent and multi-agent environments sepa-
rately. Finally, we conclude our work in Section 7.

2. Background

As mentioned previously, the classical methods for solving
Markov decision processes (MDPs) with a large state space sizes
are faced with the problem of curse of dimensionality. A common
way to overcome this challenge is to use technologies of decompo-
sition and aggregation, and another is to use factored state space.
Decomposition and aggregation techniques are generally special
cases of the classic divide-and-conquer framework to split a large
problem into smaller components and solve the parts in order to
construct the global solution. Finally, all local solutions are com-
pounded in order to reach an overall solution. Methods that are
based on this technique are classified based on the deterministic
and non-deterministic nature of the problems they must solve.

Following methods can be used for deterministic problems.
Decomposition principles, for solving a very large linear program,
divide it into many correlated linear programs of smaller sizes.
Dantzig–Wolfe decomposition [7] is one of the most well-known
methods of this kind. In [8] how to use the Dantzig–Wolfe decom-
position [7] to solve MDP as linear programming is shown. Also,
decomposition techniques of Ross and Varadarajan [9], and Abbad
and Boustique [10] for solving certain MDPs of large size have
introduced. These works propose some algorithms to compute
optimal strategies for several categories of MDPs (average, dis-
counted and weighted) and also can be applied to many practical
planning problems. One of the most important steps of the decom-
position algorithm of Ross and Varadarajan [9] is to solve the
aggregated MDP which is itself an MDP. Ross and Varadarajan [9]
used a classical algorithm for solving the aggregated MDP and did
not give any new method for solving the aggregated MDP. The pro-
posed algorithm by Abbad and Boustique [10] computes an average
optimal strategy which is based on the graph adapted with the orig-
inal MDP, introducing some hierarchical structure for this graph.

Main part of this algorithm is to infer levels of Graph G and solve
the limited MDP corresponding with each level. The local solutions
of sub MDPs provide an optimal strategy for the final MDP.

But wherever the problem encounters uncertainty, methods
such as Dean and Lin decomposition [11], that are one of the first
methods presented in random contexts, are introduced. They have
shown that divide-and-conquer algorithms can be used for solving
some MDPs which are loosely coupled. Using divide-and-conquer
strategy in RL has led to HRL. Temporal abstraction is used in HRL to
divide the state space into separate regions. Then for each region,
a policy is calculated that is called a macro action. Macro actions
dramatically reduce the number of decisions in solving large MDPs
[4,9]. So in the HRL, there is no need to learn policies at the begin-
ning, but instead, the existing policies are used for subtasks [12].

One of the most important attributes of using temporally
extended actions as the smallest development of HRL is to establish
SMDPs. Actions in SMDPs take varying amounts of time to com-
plete. They try to model temporally extended actions. At SMDP, in
contrast with MDP where state changes only by doing an action, the
state of the system may change continuously during performing a
temporally extended action and for this reason, they are commonly
used in hierarchical reinforcement learning concept. In the follow-
ing sections, hierarchical reinforcement learning will be explained
in more detail.

Another way to solve the curse of dimensionality utilizes the
state space variables. The state space of the MDP can be considered
as a cross-product of sets of state variables Ei(E = E0× E1× . . . × En),
which is called factored MDP (FMDP). In [13,14] the authors exploit
such a factored state space to reduce the amount of computa-
tion and the memory required to compute the optimal solution;
although it is a challenge to obtain their state variables.

2.1. Markov and semi-Markov decision processes

To model single-agent environments in RL problems is used of
MDPs. In the MDP framework, at each time step t, t = 1, 2, . . . a
learning agent interacts with an environment and observes its envi-
ronmental state st ∈ S, where S is the set of possible states. The agent
chooses an action from the set of available actions at state st, A(st),
based on a policy, a description of the behavior of an agent. As a
result of each action at, the agent receives a scalar reward rt ∈ R,
where R is a the reward distribution, and observes state st+1 ∈ S one
step time later. The agent’s objective is to learn an optimal pol-
icy for selecting actions which maximize the expected discounted
reward over time, E{

∑∞
t=0�trt} where 0 〈 � 〈 1 is called discount fac-

tor. The popular RL algorithms based on MDP are Q-learning, TD(�)
and SARSA [2]. It is difficult to apply purely RL algorithms to real
world problems with continuous space. Therefore, the new model
is proposed that gives the possibility to the agent to do its action in
several time steps, which is called SMDP [3].

A SMDP is a five-tuple, 〈S, A, P, R, J〉 where S is a finite set of
states, A is a finite set of actions, P : S ∗ A ∗ S ∗ N → [0, 1] is a multi-step
state transition function, and P(s′, N|s, a) denotes the probability of
making a transition from state s to state s′ by taking action in N time
steps; and the transition is performed only in decision stages. SMDP
model displays a snapshot of the system at key decision points.
R : S ∗ A → R is a reward function for SMDP model and R(s, a) is
the total expected reward that will be received between the two
decision stages. The update rule of SMDP Q-learning is as follows:

Q (s, a) = (1 − ˛)Q (s, a) + ˛[r(s, a) + �NQ (s′, a′)] (1)

2.2. Hierarchical reinforcement learning

HRL is used to decompose the original task into several subtasks
so that learning complexity is reduced. Studies in HRL have led to

Download English Version:

https://daneshyari.com/en/article/6905588

Download Persian Version:

https://daneshyari.com/article/6905588

Daneshyari.com

https://daneshyari.com/en/article/6905588
https://daneshyari.com/article/6905588
https://daneshyari.com

