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a  b  s  t  r  a  c  t

The  goal  of  this  paper  is  to handle  the  large  variation  issues  in fuzzy  data  by constructing  a  variable
spread  multivariate  adaptive  regression  splines  (MARS)  fuzzy  regression  model  with  crisp  parameters
estimation  and  fuzzy  error  terms.  It deals  with  imprecise  measurement  of response  variable  and  crisp
measurement  of explanatory  variables.  The  proposed  method  is  a two-phase  procedure  which  applies  the
MARS  technique  at phase  one  and  an  optimization  problem  at phase  two  to estimate  the  center  and  fuzzi-
ness  of  the  response  variable.  The  proposed  method,  therefore,  handles  two  problems  simultaneously:
the  problem  of large  variation  issue  and  the  problem  of  variation  spreads  in  fuzzy  observations.  A realistic
application  of  the  proposed  method  is  also  presented,  by  which  the  suspended  load  is modeled  using  dis-
charge  in  a hydrology  engineering  problem.  Empirical  results  demonstrate  that  the  proposed  approach
is  more  efficient  and  more  realistic  than  some  well-known  least-squares  fuzzy  regression  models.

© 2014  Published  by  Elsevier  B.V.

1. Introduction

Fuzzy regression analysis is a widely known method for seeking
the fuzzy relationship between input variables (also known as inde-
pendent or explanatory variables) and output variable (also called
dependent or response variable) based on a crisp (exact) or fuzzy
(imprecise) data set. Two main approaches to construct a regression
model in fuzzy environments are:

1. the possibilistic approach, e.g. see [2,3,6,32,38,44], and
2. the fuzzy least-squares approach, e.g. see

[4,8,10,11,13,14,33,34,41,42].

However, during recent years, it is shown that in some cases the
combined techniques, which integrate several single methods, have
greater accuracy than any individual method [19,27,30]. Although
it is shown that these methods have some theoretical and applied
advantages the issue of the large variation data however has not
been discussed in these studies. The problem of large variation data,
specially, occurs in the analysis of some real-world data, such as:

∗ Corresponding author. Tel.: +98 231 3366292; fax: +98 231 3354082.
E-mail addresses: jchachi@profs.semnan.ac.ir, j.chachi@math.iut.ac.ir (J. Chachi).

incomes data, rainfall data, data related to the characteristics of soil,
and so on.

To resolve the above problem, nonparametric models can be
used. One of the most promising nonparametric techniques is
multivariate adaptive regression splines (MARS) which models
relationships that are nearly additive or involve interactions with
fewer variables [16]. It essentially builds flexible models by fitting
piecewise linear regressions; that is, the non-linearity of a model is
approximated through the use of separate regression slopes in dif-
ferent intervals of the variable space [18]. Over the last years, MARS
has been compared with a number of parametric and nonpara-
metric approximation routines in terms of its accuracy, efficiency,
robustness, model transparency, and simplicity [1,24–26,37].

In this paper, MARS technique and a mathematical program-
ming method are integrated to propose a new hybrid fuzzy
regression procedure to cope with the problem of modeling and
analyzing the large variation data. We  consider the case when the
response variable is fuzzy and the explanatory variables are crisp.
This situation commonly arises in practical studies especially in
hydrology engineering (as we shall see in Section 6).

The proposed method is a two-phase procedure for computa-
tion of fuzzy regression that is simple and gives good solutions. At
the first phase, this correspondence employs the MARS technique
to estimate the crisp regression coefficients of the model using
the defuzzified values of fuzzy observations of response and the
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crisp observations of explanatory variables. At the second phase,
using the evaluation criterion proposed by Hojati et al. [19] as the
objective function of a programming problem, a mathematical pro-
gramming model is then constructed to determine the fuzzy error
term associated with each observation. The model is a variable
spread model, and so can avoid the spread increasing problem. A
real-life problem in hydrology engineering is used to illustrate the
applicability of the introduced method. The performance of the pro-
posed approach with respect to some well-known fuzzy regression
models are considered in a comparative study.

The structure of the paper is as follows. In the section below, we
shall describe some aspects of fuzzy set, fuzzy arithmetic and mul-
tivariate adaptive regression splines known as MARS. In Section 3,
using MARS technique, we describe a variable spreads MARS-
fuzzy regression model for fuzzy response and crisp explanatory
variables. In Section 4, forecasting via fuzzy inference system is
illustrated. Two goodness of fit criteria are recalled in Section 5 for
evaluating the fuzzy regression models. In Section 6, we  explain
the applicability of the proposed hybrid model to estimate the sus-
pended load based on the discharge, when the available real data of
the suspended load are imprecise (fuzzy) rather than crisp (exact).
Finally, we state important conclusions of the paper in Section 7.

2. Preliminaries

2.1. Fuzzy sets and fuzzy arithmetic

A fuzzy set Ã on the universal set X  is described by its member-
ship function Ã(x) : X  → [0,  1]. In this paper, we assume that X  = R,
the set of real numbers. The crisp set A˛ = {x ∈ R  : Ã(x)≥˛},  ̨ ∈ (0,
1], is called the ˛-cut of Ã,  and for  ̨ = 0 we assume A0 = cl{x ∈ R  :
Ã(x) > 0}, where cl is the closure operator.

A specific class of fuzzy sets on R  is the so-called LR-fuzzy num-
bers Ñ = (n, l, r)LR with central value n ∈ R, left and right spreads l ∈
R

+, r ∈ R
+, decreasing left and right shape functions L : R

+ → [0,  1],
R : R

+ → [0,  1], with L(0) = R(0) = 1. Typically, the LR-fuzzy number
Ñ has the following membership function [45]

Ñ(x) =

⎧⎪⎨
⎪⎩

L
(

n − x

l

)
if x ≤ n,

R
(

x − n

r

)
if x > n.

(1)

A special type of LR-fuzzy number is the so-called triangular
fuzzy number, denoted by Ñ = (n, l, r)T . The membership function
of triangular fuzzy number Ñ is as follow

Ñ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − (n − l)
l

if  x ∈ [n − l, n],

(n + r) − x

r
if  x ∈ (n, n + r],

0 if x /∈ [n − l, n + r].

(2)

For l = r, the triangular fuzzy number Ñ is called symmetric tri-
angular fuzzy number and is abbreviated by Ñ = (n, l)T .

For the algebraic operations of LR-fuzzy numbers, we have the
following result on the basis of Zadeh’s extension principle (for
more details, see [45]). Let M̃ = (m,  lm, rm)LR and Ñ = (n, ln, rn)LR

be two LR-fuzzy numbers and � be a real number. Then

� ⊗ M̃ =

⎧⎪⎨
⎪⎩

(�m, �lm, �rm)LR if � > 0,

I{0} if � = 0,

(�m, |�|rm, |�|lm)RL if � < 0,

(3)

� ⊕ M̃ = (� + m, lm, rm)LR, (4)

M̃ ⊕ Ñ = (m + n, lm + ln, rm + rn)LR, (5)

where IA stands the characteristic function of a crisp set A.
Defuzzification: Many defuzzification approaches have been pro-

posed in the literature, of which the center of gravity (COG) method
(also called the centroid method) is the most common used method
[5,35]. The COG method calculates Nc, the defuzzified value of fuzzy
number Ñ, as follows:

Nc =
∫

xÑ(x) dx∫
Ñ(x) dx

. (6)

We can easily obtain the defuzzified value of Ñ = (n, l, r)T as
Nc = 1/3(3n − l + r).

2.2. Multivariate adaptive regression splines (MARS): a brief
review

Multivariate adaptive regression splines (MARS) is a non-
parametric regression modeling procedure which was  first
introduced by Friedman [16] to efficiently approximate the rela-
tionship between a dependent variable (y) and a set of independent
variables (x) in a piecewise regression, especially when the data
set is large and/or the relationships between the variables does
not follow a linear function. The MARS model takes the form of
an expansion in multivariate spline basis functions

y = ˇ0 +
M∑

m=1

ˇmBm(x), (7)

where ˇ0, ˇ1, . . .,  ˇM, are the coefficients of the basis functions
determined by a least-squares regression, M is the number of basis
functions, and

Bm(x1, . . .,  xn) =
Km∏
i=1

max{Sim(xj(i,m) − tim), 0}, (8)

where Sim = ±1, xj(i,m)’s are the explanatory variables associated
with the basis function Bm(x1, . . .,  xn), i.e. the values of jth explana-
tory variables at ith node of mth basis function, Km is the level
of interaction between j(i, m)  variables, and tim indicates the knot
locations for Bm(x1, . . .,  xn) [16,18].

Basis functions are selected from the collection C where

C = {{max{(xj − t), 0}, max{(t − xj), 0}}
t,j

: t ∈ {xj1, . . .,  xjn}, j = 1, . . .,  k}. (9)

Each function is piecewise linear with a knot t at every xji. One
might assume that only piecewise linear functions can be formed
from basis functions, but basis functions can be multiplied together
to form non-linear functions, which are either order one or cubic,
depending on the degree of continuity of the approximation. There-
fore, by allowing the basis function to bend at the knots, MARS can
model functions that differ in behavior over the domain of each
variable [18,37].

MARS models are developed through a two-stage for-
ward/backward stepwise regression procedure which finds the
location and number of the needed spline basis functions. To make
the MARS algorithm computationally affordable, the maximum
number of basis functions, the maximum number of knots con-
sidered, the minimum number of observations between knots, and
the highest order of interaction terms in the model are specified by
the analyst (for more details see [18]). Generally, finding a MARS
model is computationally complex. In this paper, we use “earth”
package in the software “R-2.14.1” to report the numerical results
[15].
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