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a  b  s  t  r  a  c  t

Using  benchmark  problems  to demonstrate  and  compare  novel  methods  to the  work  of others  could
be  more  widely  adopted  by  the  Soft  Computing  community.  This  article  contains  a collection  of several
benchmark  problems  in  nonlinear  control  and system  identification,  which  are  presented  in a  standard-
ized  format.  Each  problem  is augmented  by examples  where  it has  been  adopted  for  comparison.  The
selected  examples  range  from  component  to plant  level  problems  and  originate  mainly  from  the  areas
of mechatronics/drives  and  process  systems.  The  authors  hope  that  this  overview  contributes  to  a  better
adoption  of  benchmarking  in method  development,  test  and  demonstration.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Once new Soft Computing (SC) methods are developed, it is of
key interest to compare their performance in relation to state-
of-the-art methods in order to position them. However, such
comparisons seldom take place due to the efforts of adopting suf-
ficient insight in and control over methods other than the own
research focus. This problem can be circumvented if benchmark
problems are adopted more widely such that one can retrieve
competing results from literature without having to master other
methods. In fact, well-established benchmark problems are avail-
able for problems such as classification, control and modeling, to
name a few. The objective of this article is to present selected (non-
linear) benchmark problems for identification and control, and to
promote a wider adoption to provide a framework for comparing
alternative SC methods. A word of caution is due: Methods typi-
cally work better on some and worse on other problems. Hence,
good results on a single benchmark problem highlight advantages
for respective problem types but should not be generalized.

Benchmarking is based on the principles of the ability to be
validated, reproducibility and comparability. This requires exact
specification of benchmark problems spanning from the process
description over experiment design, test data to assessment criteria
for obtained results. Unfortunately, even complete and commonly
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adopted “benchmark” problems often do not provide a complete,
self-enclosed description. A typical situation is that a process model
to be used is described well; however engineering details, experi-
ment/test design and assessment criteria are incomplete or lacking.

In the following section, sets of assessment criteria are proposed
for modeling and control. Section 3 contains the benchmark prob-
lems. The presented selection does not attempt to be complete but
rather offer attractive problems for the Soft Computing community.
The sequence was  designed to start from simple component and
ascend to plant level problems. This article is an extended version of
the identification and control part of a position paper written for the
German GMA  technical committee on Computational Intelligence
[33].

2. Assessment criteria

2.1. Model performance

Criteria to assess the results of modeling tasks can address
approximation quality, model complexity and model interpretabil-
ity [47]. Most commonly, the approximation/prediction error is
used as assessment criterion. Most significant is the result for vali-
dation/test rather than for the training data. Many different criteria
are proposed as e.g. sometimes the worst case and sometimes the
average deviation may  be more important. In case of benchmark
problems, it is recommended to report a few widely accepted crite-
ria such as a subset of the following ones: Given N data sets where
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y(k) is the output of a system and ŷ(k) the corresponding output of
the model, this could be the maximum absolute error (MAE)

JMAE = Jmax = max
1≤k≤N

∣∣y(k) − ŷ(k)
∣∣ , (1)

the sum of squared errors (SSE)

JSSE =
N∑

k=1

(
y(k) − ŷ(k)

)2
, (2)

the mean squared error (MSE)

JMSE = 1
N

N∑
k=1

(
y(k) − ŷ(k)

)2
, (3)

and/or the root mean squared error (RMSE)

JRMSE =
√

JMSE. (4)

The measure variance accounting for (VAF)

JVAF =
(

1 − Var(y(k) − ŷ(k))
Var(y(k))

)
· 100 % , (5)

origins from linear regression where it provides the percentage of
the variance of y that can be explained by the used linear regression
model.1 Var(◦) gives the variance of ◦. JVAF can be estimated by the
coefficient of determination R2

R2 = 1 −
∑N

k=1

(
y(k) − ŷ(k)

)2∑N
k=1(y(k) − y)2

with y = 1
N

N∑
k=1

y(k). (6)

To admit comparing models with different numbers of parameters
R2 is adjusted to

R2
a = 1 − N − 1

N − (dim(O) + 1)
· (1 − R2). (7)

A related measure is the normalized mean squared error (NMSE)

JNMSE =
∑N

k=1

(
y(k) − ŷ(k)

)2∑N
k=1(y(k) − y)2

, (8)

and the best fit rate (BFR)

JBFR =

⎛
⎝1 −

√∑N
k=1

(
y(k) − ŷ(k)

)2√∑N
k=1(y(k) − y)2

⎞
⎠ · 100 % (9)

Note, that JVAF and JBFR can take negative value, which are typically
replaced by 0. k is the discrete time with t = k T0, T0: sampling time.
Common practice is to additionally asses the frequency distribution
of the residual �(k) = y(k) − ŷ(k) wrt. to mean, shape and symme-
try of the tails. This provides a qualitative indication whether the
residuals are normally distributed.

It is important to differentiate between one-step-ahead and
recursive model evaluation: In the first case measurements avail-
able until present time k are used to predict the output ŷ(k + 1)
one-step-ahead into the future

ŷ(k + 1) = f (y(k), . . .,  y(k − n), u(k − �), . . .,  u(k − � − m)) , (10)

where n and m,  respectively, is the number of lagged terms consid-
ered and � a discrete dead-time. In a second case, lagged predictions
are used as model inputs instead of measured data:

ŷ(k + 1) = f (ŷ(k), . . ., ŷ(k − n), u(k − �), . . .,  u(k − � − m)). (11)

1 Note, that it loses the original statistical interpretation when applied to nonlin-
ear models.

Fig. 1. Illustration of a typical relationship between approximation quality, com-
plexity and interpretability of a model [47].

Good recursive model evaluation results are more difficult to
achieve than good one-step-ahead predictions. In case models of
different complexity yield similar approximation performance, the
simpler model should be preferred (“Ockham’s principle”). Model-
complexity-oriented criteria take this into account by valuing the
number of parameters (as a measure for model complexity) besides
the approximation error. An example of such a criterion is Akaikes’s
Final Prediction Error (FPE)

JFPE = 1 + dim(�)/N

1 − dim(�)/N

1
N

N∑
k=1

(
ŷ(k, �) − y(k)

)2
. (12)

In case of multi-input multi-output systems above recorded, crite-
ria can be assessed individually for the outputs. Alternatively, the
quantities can be scaled and aggregated to a single metric as in
Section 3.9.

Other criteria are recorded e.g. in [61]. Ease of model inter-
pretability is a meaningful concept for comparing fuzzy and
neuro-fuzzy rule-based models, see Fig. 1. However, interpretabil-
ity is difficult to define as a metric criterion.

2.2. Control performance

Criteria to assess the control performance include the step
response, reference tracking, disturbance rejection behavior and
the control effort. This is analyzed for the nominal case and in some
benchmark problems also with predefined structured model uncer-
tainties. The latter is application-dependent. However, the general
procedure is discussed in this section. Therefore, details will be
given in relation to the individual benchmarks.

As previously described for the modeling task, widely accepted
criteria and related measures will be analogously given in the fol-
lowing: The step response is used to characterize the accuracy,
damping and speed of the closed loop system. To measure the
steady state accuracy the integrated absolute error (IAE) is given
by

JIAE =
N∑

k=1

|y(k) − yss| T0 (13)

with yss as the steady-state response. Common practice is to mea-
sure the maximum percent overshoot (PO)

JPO =
max

1≤k≤N
(y(k) − yss)

yss
· 100 (14)

and maximum percent undershoot (PU)

JPU =
max

1≤k≤N
(−y(k))

yss
· 100 . (15)

The reference tracking criteria are concerned with the response of
the closed-loop system to the time-variable reference r(t) alone,
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