
Applied Soft Computing 24 (2014) 169–180

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

A heuristic solution for model checking graph transformation systems

Rosa Yousefian, Vahid Rafe ∗, Mohsen Rahmani
Department of Computer Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran

a r t i c l e i n f o

Article history:
Received 24 April 2013
Received in revised form 5 April 2014
Accepted 27 June 2014
Available online 12 July 2014

Keywords:
State space explosion
Model checking
Graph transformation systems
Genetic algorithm

a b s t r a c t

One of the commonly used techniques to verify software and hardware systems which have been specified
through graph transformation system (GTS), especially safety critical ones, is model checking. However,
the model checking of large and complex systems suffers from the state space explosion problem. Since
genetic algorithm (GA) is a heuristic technique which can be used to search the state space intelligently
instead of using exhaustive methods, in this paper, we propose a heuristic approach based on GA to find
error states, such as deadlocks, in systems specified through GTS with extra large state space. To do so, in
each step of space exploration our algorithm determines which state and path should be explored. The
proposed approach is implemented in GROOVE, a tool for model checking graph transformation systems.
The experimental results show that our approach outperforms significantly in comparison with existing
techniques in discovering error states of models with large state space.

© 2014 Elsevier B.V. All rights reserved.

Introduction

Correctness is one of the most desirable properties for any soft-
ware system. A great part of each developing approach is devoted
to assess the correctness of the system; however, faults and errors
are common. The sooner errors are found the better results can be
achieved [1]. Hence, model-based verification techniques should
be used before implementation to decrease the cost and the risk
and also to increase the quality of the product. To do so, it is neces-
sary to use an accurate approach to specify models, and thus, using
formal methods for this purpose can be one of the best solutions.

Graphs and diagrams provide a very useful, direct, and intu-
itive means to describe software systems [2]. Graph transformation
systems (GTS) [2,3] provide the formal foundations to convert
graphs and diagrams into formal specifications. Even though GTS
has not been very popular for years, it is able to capture the sys-
tems behavior naturally and succinctly. However, modeling per-se
is not enough. Proper verification solutions are mandatory to con-
vince people of the actual benefits provided by modeling. Different
approaches already exist to verify GTS through model checking
[4–6]. All these approaches only deal with a priori bounded transi-
tion systems because of the nature of model checking techniques
in general. However, in many cases, the transition system tends to

∗ Corresponding author. Tel.: +98 86 32625524.
E-mail addresses: Rosa8a81@yahoo.com (R. Yousefian), v-rafe@araku.ac.ir,

rafe@iust.ac.ir (V. Rafe), m-rahmani@araku.ac.ir (M. Rahmani).

be too large. Thus, the state space explosion problem occurs. In this
case the usual verification approaches like [4–11] cannot be useful.

Although there exists different approaches, like symbolic verifi-
cation [12,13], partial order reduction [14,15], symmetry checking
methods [16–19] and scenario-driven model checking [1] for the
systems specified through GTS, almost all of these methods use
exhaustive search on the state space and thus suffer from the state
explosion problem. For the cases in which the usual approaches
cannot be employed due to the size of the state space, using heuris-
tic approaches like GA can be a proper solution.

Genetic algorithms are usually used for optimization problems
but in this work, we propose a method using GA to find errors
such as deadlocks in systems specified through GTS. Since it is
not possible to search all the states, our approach chooses a sub-
set of them to be explored using GA. We implement the proposed
approach through GROOVE [20,21], a toolset to generate state space
for GTS specification. In this paper, we concentrate more on search-
ing deadlocks which are a sort of safety properties.

The rest of the paper is organized as follows. In Related works
Section, we review some of the already proposed solutions for
dealing with state space explosion. In Background Section, we
briefly introduce the required background. Proposed method Sec-
tion presents our proposed approach to exploration of the state
space using GA. Our algorithm implementation is described in
Implementation Section. In Evaluation Section, we employ the pro-
posed method for several known problems and consequently we
discuss the results of our experiments. Finally, we conclude the
paper and highlight the future works in Conclusion and future
works Section.

http://dx.doi.org/10.1016/j.asoc.2014.06.055
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.06.055
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.06.055&domain=pdf
mailto:Rosa8a81@yahoo.com
mailto:v-rafe@araku.ac.ir
mailto:rafe@iust.ac.ir
mailto:m-rahmani@araku.ac.ir
dx.doi.org/10.1016/j.asoc.2014.06.055

170 R. Yousefian et al. / Applied Soft Computing 24 (2014) 169–180

Related works

Generally, proposed approaches for overcome the state space
explosion that can be found in the literature fall into one of the
following four broad categories:

Classic approaches

To cope with the state space explosion problem in model check-
ing systems, some classic solutions like the ones based on reducing
the size of the model’s state space [17–19,22–27] and those based
on memory saving [28–32] have been presented. There also exist
model abstraction techniques that reduce the state space by reduc-
ing the size of the model. The general idea in methods which are
based on memory saving is to use various algorithms for reducing
the memory space required for saving the states.

Simple heuristic approaches

A simple heuristic search algorithm is the best-first search,
which is applied for protocol validation to achieve significant gains
over depth-first search [33]. Heuristics for choosing a search order
that favors visiting first successor states that are most likely to
lead to an error are discussed in [34] in the context of symbolic
model checking and in [35] in the context of explicit model check-
ing. A best-first search with binary decision diagram (BDD) based
model checking within the Murф tool has been used in [36]. Bloem
et al. [37] used heuristics to reduce the bottlenecks of image com-
putation in symbolic model checking. In another work [38], the
authors proposed an OBDD-based version of the A* algorithm.
Friedman et al. [39] applied a Coverage First Search related to struc-
tural heuristics to generate test suites. Ganai and Aziz [40] also
used coverage-based techniques to guide a state-space search for
control-dependent hardware.

Meta heuristic approaches

In recent years, some artificial intelligence algorithms have been
used to improve the memory utilization. To bring up a few exam-
ples, frameworks based on reinforcement learning [41], ant colony
algorithm [42–44] and GA in studying and exploring the large state
space models can be mentioned.

A framework based on reinforcement learning has been pre-
sented for checking the linear temporal properties [41]. In this
framework, the goal is to improve the memory utilization through
increasing the probability of occurrence of the paths that lead to
violation of the properties. In reinforcement learning algorithm the
agent learns about the concepts by interacting with its environment
through rewards and punishments.

By using the ant colony algorithm, inspired by the efforts of
ants in searching for the shortest path to the food resources,
model checking systems can explore the state space of the prob-
lem [42–44]. By using this algorithm, they have been able to find
the optimal solution for the problem with the least amount of
resources.

Most of the researches that have been conducted for model
checking systems in the field of GA, for example [45,46], are based
on the textual modeling. Godefroid and Khurshid [46] introduce a
new framework for reducing the state space in concurrent reactive
systems. This framework directs us into the error states by utiliz-
ing heuristic practical programs that use the GA. This framework
is implemented using Verisoft [47] which is a tool for exploring
the systems’ state space. This framework, by using the GA and
utilizing some heuristic methods, guides a search engine into find-
ing errors such as deadlock and assertion violations in state space
of a concurrent reactive system [46]. In Java Pathfinder a model

checking system has been implemented that can identify the
deadlocks [45]. For more details about other heuristic approaches
interested readers can refer to [48].

Heuristic approaches on GTS

In [49] the authors have formalized a framework for the appli-
cation of heuristic search in order to analyze structural properties
of systems modeled by graph transition systems. They believe that
heuristic search is intended to reduce the analysis effort and also
to deliver shorter solutions, (i.e. shorter paths in graph transition
systems). To do so, they use A* algorithm. This framework is imple-
mented in HSF-SPIN a heuristic model checker compatible with the
successful model checker SPIN [50].

Most of the heuristic approaches mentioned till now are exhaus-
tive search approaches. In fact, the employed heuristic approach
helps the traversing algorithm to find the error states faster, but
the state space explosion still can occur. In this paper, we propose
a solution in which only a subset of the state space is considered to
be searched.

Another important issue is that GTS is a graphical formal lan-
guage which is used in different software development phases
(e.g. meta-modeling [51], architectural style representation [52],
refinement [53], refactoring [54], model transformation [55], per-
formance analysis [56], etc.). So, it is very useful to propose a novel
approach to overcome the state space explosion problem in GTS.

Background

Model checking

Utilization of formal methods as an efficient way for quality
assurance and correctness checking of a designed system is highly
necessary. Model checking is an automatic method for studying the
properties given to a system and their verification. In model check-
ing, properties can be classified into different groups like safety and
liveness.

The safety property, informally, claims that “no bad event should
occur” in a system or a “good incident” should always happen in a
system. To find a state that leads into the violation of safety prop-
erty, it is necessary to find a finite path into a violating state (e.g.
deadlock state) [57].

If all states are valid, it becomes clear that this property is valid
in the system and if it is rejected, the model checking approach can
demonstrate the violated path and state.

Liveness properties assert that “something good” will happen
eventually. In order to find a Liveness property violation, it is
needed to find an infinite path in which a desired state never occurs
(i.e. the expected good never happened) [58].

Since model checking needs to generate all the possible state
space of the model to verify its validity and the given properties,
the model must be relatively small. In other words, model checking
of large models faces the problem of memory resource limitation
which causes the state space explosion problem.

Graph transformation system

Graph transformation is a graphical formal language for system
modeling. The mathematical foundation of graph transformation
systems returns to more than 40 years ago in response to short-
comings in the expressiveness of classical approaches to rewriting
(e.g. Chomsky grammars) to deal with nonlinear grammars [59].
Graphs are suitable tools for explanation and modeling the struc-
ture of complex systems. One of the most fundamental features of
the GTS is its formal and accurate mathematical basis [2].

Download English Version:

https://daneshyari.com/en/article/6905769

Download Persian Version:

https://daneshyari.com/article/6905769

Daneshyari.com

https://daneshyari.com/en/article/6905769
https://daneshyari.com/article/6905769
https://daneshyari.com

