
Applied Soft Computing 24 (2014) 277–283

Contents lists available at ScienceDirect

Applied  Soft  Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

A  memetic  algorithm  for  the  re-entrant  permutation  flowshop
scheduling  problem  to  minimize  the  makespan

Jianyou  Xua,∗,  Yunqiang  Yinb, T.C.E.  Chengc,  Chin-Chia  Wud,  Shusheng  Gua

a College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
b Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China
c Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
d Department of Statistics, Feng Chia University, Taichung, Taiwan

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 20 October 2012
Received in revised form 11 May  2013
Accepted 6 July 2014
Available online 18 July 2014

Keywords:
Re-entrant permutation flowshop
scheduling
Memetic algorithm
Makespan

a  b  s  t  r  a  c  t

A  common  assumption  in  the  classical  permutation  flowshop  scheduling  model  is that  each  job  is
processed  on  each  machine  at most  once.  However,  this  assumption  does  not  hold  for  a  re-entrant  flow-
shop in  which  a  job  may  be operated  by  one  or more  machines  many times.  Given that  the re-entrant
permutation  flowshop  scheduling  problem  to  minimize  the  makespan  is  very  complex,  we  adopt  the
CPLEX  solver  and  develop  a memetic  algorithm  (MA)  to  tackle  the  problem.  We  conduct  computational
experiments  to  test  the  effectiveness  of  the  proposed  algorithm  and  compare  it with  two  existing  heuris-
tics. The  results  show  that CPLEX  can  solve  mid-size  problem  instances  in  a reasonable  computing  time,
and  the  proposed  MA  is effective  in  treating  the problem  and  outperforms  the two  existing  heuristics.

© 2014  Elsevier  B.V.  All  rights  reserved.

Introduction

In classical scheduling model, it is commonly assumed that each
job visits each machine only once (see [1]). However, the assump-
tion that each job is processed on each machine at most once may
not be valid in some real-life situations. A job may  be processed
by the same machine twice or more in practice. Such a processing
environment is called the “re-entrant flowshop” in the literature.
Examples of the re-entrant flowshop can be found in semiconductor
wafer manufacturing [2], signal processing [3], and manufacturing
of printed circuit boards [4–7].

The defining characteristic of the re-entrant flowshop compris-
ing m machines is that every job in the shop must be processed
on the m machines in the following order: M1, M2,. . .,  Mm; M1,
M2,. . .,  Mm;. . .;  and M1, M2,. . .,  Mm, with L re-entrants (or lev-
els), i.e., starting on machine M1 and ending on Mm, and the job
sequence is the same on any machine at each level. The corre-
sponding scheduling problem is known as the re-entrant flowshop
(RFS) scheduling problem. With the imposition of the constraint
that no passing of the jobs is allowed, the problem becomes the
RPFS scheduling problem.

∗ Corresponding author. Tel.: +86 18602470166.
E-mail addresses: xujianyou@mail.neu.edu.cn, zhyouxu@163.com (J. Xu).

For the RPFS scheduling problem to minimize the makespan,
Pan and Chen [8] proposed three extended mixed binary integer
program (BIP) formulations and six heuristics to treat the prob-
lem with up to n = 8 jobs. They used the Lingo optimizer to solve
small-sized instances of the problem. Alfieri [9] studied a multi-
objective flowshop scheduling problem arising in the cardboard
industry, where the objective is to develop a modular decision
support system for daily workload planning. The problem setting
includes multi-machine stations, sequence-dependent setup times,
and work calendars on resources, re-entrant flows, external oper-
ations, and transfer batches between stations. Liu [10] applied a
genetic algorithm (GA) based method to solve the RFSP scheduling
problem involving multiple orders per job, where the objective is
to minimize the total weighted tardiness of all the jobs. Rau and
Cho [11] proposed GAs to solve the inspection allocation problem
in a re-entrant production system. Lin and Lee [12] presented a GA
that encodes the problem as multi-level chromosomes to reflect
the dependent relationship between the re-entrant possibility and
resource consumption. For more studies of the RPFS scheduling
problem in different settings, we refer the reader to Choi et al. [13],
Chu et al. [14], and Boudhar and Meziani [15]. For more detailed
research results on variants of the reentrant scheduling problem,
the reader may  refer to the surveys of Bellman and Ernest [16],
Uzsoy et al. [7], and Lin and Lee [17], among others.

Except for the few studies cited above, research on the RPFS
scheduling problem is relatively unexplored. Moreover, searching

http://dx.doi.org/10.1016/j.asoc.2014.07.002
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.07.002
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.07.002&domain=pdf
mailto:xujianyou@mail.neu.edu.cn
mailto:zhyouxu@163.com
dx.doi.org/10.1016/j.asoc.2014.07.002


278 J. Xu et al. / Applied Soft Computing 24 (2014) 277–283

for the optimal solution for the RFSP scheduling problem is only
viable for instances involving a small number of jobs. For exam-
ple, Pan and Chen [8] used the Lingo optimizer to solve problem
instances with up to n = 8 jobs. Chen [18] developed a branch-and-
bound algorithm incorporating five lower bounds to solve problem
instances with up to n = 15 jobs. Chen et al. [19] further proposed
a hybrid tabu search and evaluated its performance with solutions
obtained from Lingo for instances with only up to n = 4 jobs. In view
of these observations, we tackle in this paper the RPFS scheduling
problem to minimize the makespan by using the CPLEX solver and
a memetic algorithm.

The remainder of this paper is organized as follows: In “Notation
and problem statement” section we introduce and formulate the
problem. In “A memetic algorithm” section we develop a memetic
algorithm to obtain near-optimal solutions for the problem. In
“Computational experiments” section we provide computational
results to assess the performance of the proposed algorithm and
compare it with two existing heuristics. We  conclude the paper
and suggest topics for future research in the last section.

Notation and problem statement

In this section we first introduce the notation to be used
throughout the paper, followed by the problem formulation.

Notation for the problem
n the number of jobs
m the number of machines
L the number of levels for each job
Mi machine number i, where i = 1,2,. . .,m
Jl
ij

the code for job j on machine i at level l, where i = 1, 2,.  . .,
m;  j = 1, 2,.  . .,  n; and l = 1, 2,. . .,  L

Ol
ik

denotes the operation of Jl
ik

on machine k at level l, where
i = 1, 2,.  . .,  n; k = 1, 2,. . .,  m;  and l = 1, 2,. . .,  L

pl
ij

the processing time of Ol
ik

on machine k at level l, where
i = 1, 2,.  . .,  n; k = 1, 2,. . .,  m;  and l = 1, 2,. . .,  L.

Cl
ij

the completion time of Jl
ij

on machine i at level l, where
i = 1, 2,.  . .,  m;  j = 1, 2,. . .,  n; and l = 1, 2,. . .,  L.

[j] the job scheduled in the jth position of a sequence.
Cl

i[j] the completion time of Jl
ij

scheduled in the jth position of
a sequence on machine k at level l, where i = 1, 2,. . .,  m;
j = 1, 2,.  . .,  n; and l = 1, 2,. . .,  L

Cmax the maximum completion time or makespan.

Notation for the MA
�, �0, �1, �2 a sequence of n jobs
�(j) the job arranged in position j of a schedule
d(�1, �2) the distance between the solutions of �1 and �2
X, X′, Xnew a population or schedule
n(X) the size of population X

We  formally state and formulate the RPFS scheduling problem to
minimize the makespan as follows: There are n jobs to be processed
on m machines (i.e., M1, M2,. . .,  Mm) where all the machines are
available throughout the working period. All the jobs are available
at time zero and preemption is not allowed. Technological con-
straints are known in advance. There is unlimited waiting space for
jobs waiting to be processed. The defining characteristic of the re-
entrant flowshop is that every job in the shop must be processed on
the m machines in the following order: M1, M2,. . .,  Mm; M1, M2,. . .,
Mm;. . .;  and M1, M2,. . .,  Mm, with L re-entrants (or levels), i.e., start-
ing on machine M1 and ending on Mm, and the job sequence is the
same on any machine at each level. Furthermore, we  assume that
the machine order is the same for all the jobs and the job sequence
is the same on each machine at each level. In addition, let Ol

ij
be the

operation of Jl
ij

and pl
ij

be the processing time of Ol
ij
, respectively.

The objective is to minimize the makespan Cmax. Pan and Chen [8]
extended the model of Wilson [20] by formulating the problem
as a mixed binary integer program and solving it using the Lingo
optimizer (for more details on the MIP  model, please refer to [8]).
However, they could solve problem instances with up to eight jobs
only. Using the same model, we apply the CPLEX optimizer to gen-
erate feasible solutions and develop a memetic algorithm (MA) to
obtain near-optimal solutions for the problem. For more details on
the MIP  model and technical computation, the reader may  refer to
Pan and Chen [8] and Chen [18].

A memetic algorithm

MA is a well-known population-based meta-heuristic, which
can be used to tackle various combinatorial optimization prob-
lems, e.g. [21–24,30,31]. In this paper we propose an improved MA
for the RPFS scheduling problem to minimize the makespan. We
summarize the key steps of the MA  as follows:
Proposed Memetic Algorithm
1: Initialize population X with n(X) solutions using the method

described in “Population initialization” section
2: while the stopping criterion is not reached do
3:  Update the population using the method described in

“Population update strategy” section
4:  (1) Generate a temporary population X′ with n(X) solutions

using the crossover and mutation operators based on X.
5:  (2) Generate a new population Xnew from X∪X′ .

(3) Set X = Xnew.
7: Perform the dynamic local search described in “Dynamic local

search” section to improve the best 10 solutions in the current
population X.

8: Update the best solution found so far.
9: Remove the duplicated solutions in X by performing a random

insertion move (remove a random job from its current position
and insert it to another position) to each duplicated solution.

10:  if (the diversity index of the population is less than a threshold
value) then

11: Perform the population restart strategy on X according to the
method described in “Population restart strategy” section

12: end if
13: end while
14: Output the best solution found so far by the algorithm.

Solution representation

In the proposed MA,  a solution (a schedule or sequence) is rep-
resented as a permutation of the n jobs, i.e., � = (�(1), �(2),. . .,
�(n)), where the jth number in the permutation �(j) denotes the
job arranged in position j of the schedule (sequence).

Population initialization

We  generate the initial population X with n(X) solutions by two
kinds of method. We  use the generalization of the insertion tech-
nique of Nawaz et al. [29] (which is called NEH) to generate the first
solution because NEH is considered to be the best among the con-
structive heuristics for permutation flowshop scheduling problems
[32]. In addition, we  also adopt a random generation heuristic that
iteratively assigns jobs to random positions to generate the other
initial solutions to guarantee good diversity of the initial popula-
tion.

Population diversity maintenance

In recent years, evolutionary algorithms such as genetic algo-
rithm, particle swarm optimization, and differential evolution,
have been widely used to deal with various kinds of combinato-
rial optimization problems. One major issue of using evolutionary



Download English Version:

https://daneshyari.com/en/article/6905778

Download Persian Version:

https://daneshyari.com/article/6905778

Daneshyari.com

https://daneshyari.com/en/article/6905778
https://daneshyari.com/article/6905778
https://daneshyari.com

