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a  b  s  t  r  a  c  t

This  study  investigates  the global  optimality  of  approximate  dynamics  programming  (ADP)  based  solu-
tions  using  neural  networks  for optimal  control  problems  with  fixed  final  time.  Issues  including  whether
or  not  the  cost  function  terms  and  the system  dynamics  need  to be  convex  functions  with  respect  to their
respective  inputs  are discussed  and  sufficient  conditions  for  global  optimality  of the  result  are  derived.
Next,  a  new  idea  is presented  to  use ADP  with  neural  networks  for optimization  of non-convex  smooth
functions.  It  is  shown  that any  initial  guess  leads  to  direct  movement  toward  the proximity  of  the  global
optimum  of the  function.  This  behavior  is  in contrast  with gradient  based  optimization  methods  in  which
the  movement  is guided  by the  shape  of  the  local  level  curves.  Illustrative  examples  are  provided  with
single  and  multi-variable  functions  that demonstrate  the  potential  of  the  proposed  method.
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Introduction

In the last two decades, approximate dynamics programming
(ADP) has been shown to have a great promise in solving optimal
control problems with neural networks (NN) [1–15]. In the ADP
framework, the solutions are obtained using a two-network syn-
thesis called adaptive critics (ACs) [2–4]. In the heuristic dynamic
programming (HDP) approach with ACs, one network, called the
‘critic’ network, maps the input states to output the cost-to-go and
another network, called the ‘action’ network, outputs the control
with states of the system as its inputs [4,5]. In the dual heuris-
tic programming (DHP) formulation, the action network remains
the same as in the HDP, however, the critic network outputs the
costates with the current states as inputs [2,6,7]. The computation-
ally effective single network adaptive critics (SNAC) architecture
consists of one network only. In [8], the action network was  elimi-
nated in a DHP type formulation with control being calculated from
the costate values. Similarly, the J-SNAC [9] eliminates the need for
the action network in an HDP scheme. Note that the developments
in [1–9] are for infinite-horizon problems.

The use of ADP for solving finite-horizon optimal control prob-
lems was considered in [10–15]. Authors of [10] developed a
time-varying neurocontroller for solving a scalar problem with
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state constraints. In [11] a single NN with a single set of weights
was proposed which takes the time-to-go as an input along with
the states and generates the fixed-final-time optimal control for
discrete-time nonlinear multi-variable systems. An HDP based
scheme for optimal control problems with soft or hard terminal
constraints was presented in [12]. Finite-horizon problems with
unspecified terminal times were considered in [13–15]. For an
extensive literature on adaptive critic based problems, the reader
is referred to [16] and the references in the chapters.

Despite much published literature on adaptive critics, there still
exists an open question about the nature of optimality of the adap-
tive critic based results. Are they locally or globally optimal? A
major contribution of this study is in proving that the AC based solu-
tions are globally optimal subject to the assumed basis functions.
To help with the development of the proof, the ADP based algo-
rithm for solving fixed-final-time problems developed in [11,12]
is revisited first. After describing the algorithm, a novel analysis of
global optimality of the result is presented. It is shown that with any
cost function with a quadratic control penalizing term, the resulting
cost-to-go function (sometimes called value function) will be con-
vex versus the control at the current time if the sampling time used
for discretization of the original continuous-time system is small
enough, and hence, the first order necessary optimality condition
[17] will lead to the global optimal control. The second major con-
tribution of this paper is in showing that the ADP can be used for
functional optimization, specifically, optimization of non-convex
functions. Finally, through numerical simulations, two examples
with varying complexities are presented and the performance of
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the proposed method is investigated. It is shown that despite the
gradient based methods, selecting any initial guess on the mini-
mum and updating the guess using the control resulting from the
actor, the states will move directly toward the global minimum,
passing any possible local minimum in the path.

The rest of this paper is organized as follows: The problem for-
mulation is given in Section ‘Problem formulation’. The ADP-based
solution is discussed in Section ‘Approximate dynamics program-
ming based solution’. The supporting theorems and analyses are
presented in Section ‘Supporting theorems and analyses’. The use
of the method in static function optimization is discussed in Section
‘Non-convex function optimization’, and the conclusions are given
in Section ‘Conclusions’.

Problem formulation

Let the control-affine dynamics of the system be given by

ẋ(t) = f (x(t)) + g(x(t))u(t) (1)

where f : R
n → R

n, and g : R
n → R

n×m. The state and control vec-
tors are denoted with x ∈ R

n and u ∈ R
n, respectively, where positive

integers n and m denote the dimensions of the respective vectors.
The selected cost function, J is fairly general but quadratic in con-
trol:

J =  (x(tf )) +
∫ tf

t0

(Q (x(t)) + u(t)TRu(t))dt (2)

where positive semi-definite smooth functions Q : R
n → R  and   :

R
n → R  penalize the states and positive definite matrix R penalizes

the control effort. The initial and final time are denoted with t0
and tf, respectively. Discretizing the time horizon to N time steps
using sampling time �t leads to the discrete-time dynamics and
cost function as

xk+1 = f̄  (xk) + ḡ(xk)uk, k ∈ K (3)

J =  (xN) +
N−1∑
k=0

(Q̄ (xk) + uTk R̄uk) (4)

where K ≡ {0, 1, 2, . . .,  N − 1}, N ≡ (tf − t0/�t), xk ≡ x(k�t + t0), f̄ (x) ≡
x + �tf  (x), ḡ(x) ≡ �tg(x), Q̄ (x) ≡ �tQ  (x), and R̄  ≡ �tR, if Euler inte-
gration is used. The problem is defined as finding a control history
uk ∈ R

m, ∀k ∈ K, such that cost function (4) is minimized subject to
the dynamics given in (3).

Assumption 1. The dynamics of the system do not have finite
escape times. Also, the functions f(x) and g(x) are smooth in x.

Remark 1. In order to use ADP, the continuous-time problem is
discretized. Moreover, the assumption that discrete-time system
(3) is obtained through discretizing a continuous-time problem is
utilized in convergence analysis of the algorithm.

Approximate dynamics programming based solution

In this section, an ADP scheme called AC is used for solving the
fixed-final-time optimal control problem in terms of the network
weights and selected basis functions. The method is adopted from
[11,12]. In this scheme, two networks called critic and actor are
trained to approximate the optimal cost-to-go and the optimal
control, respectively. It should be noted that the optimal cost-to-
go, which represents the incurred cost if optimal decisions are
made from the current time to the final time, at each instant is a

function of the current state, xk, and the current time, k. Denoting
the cost-to-go with J∗

k
(xk), one has

J∗k(xk) =  (xN) +
N=1∑
k̄=k

(Q̄ (xk̄) + u∗T
k̄
R̄u∗T
k̄

) (5)

where u∗
k

denotes the optimal control at time k given the current
state xk. The solution to the problem is given by the Bellman
equation [18] as

J∗N(xN) =  (xN) (6)

J∗k(xk) = Q̄ (xk) + u∗T
k R̄u

∗
k + J∗k+1(x∗

k+1), k ∈ K (7)

u∗
k = argminuk ∈ Rm (Q̄ (xk) + uTk R̄uk + J∗k+1(f̄ (xk) + ḡ(xk)uk)), k ∈ K(8)

where x∗
k+1(f̄ (xk) + ḡ(xk)u∗

k
). Applying the first order optimality

condition [4,17], Eq. (8) leads to

u∗
k = −1

2
R̄−1ḡ(xk)

T∇J∗k+1(x∗
k+1), k ∈ K (9)

where ∇J∗
k+1(x∗

k+1) denotes gradient (∂J∗
k+1(xk+1)/∂xk+1) evaluated

at x∗
k+1 and formed as a column vector.
An iterative learning scheme can be derived from Bellman equa-

tion for finding the solution to the fixed-final-time problem once
Eq. (9) is replaced with [12]

ui+1
k

= −1
2
R̄−1ḡ(xk)

T∇J∗k+1(f̄ (xk) + ḡ(xk)u
i
k), k ∈ K (10)

Superscript i denotes the index of iteration which starts with an ini-
tial guess on u0

k
, k∈K. The converged value of ui

k
in (10) is denoted

with u∗
k

and used in (7). Note that in a dual network AC scheme for
finite horizon optimal control, ‘iterations’ takes place in the train-
ing of the actor, as seen in (10). Once state-control relationship is
learned, the optimal cost-to-go is obtained in a ‘one-shot’ process
as given in (7).

Denoting the approximated optimal cost-to-go and the approx-
imated optimal control in a feedback form with Jk(xk) and uk(xk),
respectively, and selecting linear in the weights NNs, the expres-
sions for the actor (control) and the critic (cost), can be written
as

uk(x) = VTk �(x), k ∈ K (11)

Jk(x) = WT
k �(x), k ∈ K ∪ {N} (12)

where Vk ∈ R
p×m and Wk ∈ R

q are the unknown weights of the actor
and the critic networks at time step k, respectively, and the selected
smooth basis functions are given by � : R

n → R
p and � : R

n → R
q

where p and q denote the number of neurons. The idea is using
Eqs. (6), (7), and (10) to find the NN weights. Note that, once J∗

k+1(·)
is known one can use (10) to find u∗

k
(.) and then (7) gives J∗

k
(.).

Therefore, starting with (6) to find J∗N(.), all the unknowns can be cal-
culated in a backward in time fashion, i.e., from k = N − 1 to k = 0. The
learning process for calculating weights Vk and Wk, ∀k is detailed
through Algorithm 1. Note that ∇�(x) ≡ (∂�(x)/∂x) is a column vec-
tor.



Download English Version:

https://daneshyari.com/en/article/6905780

Download Persian Version:

https://daneshyari.com/article/6905780

Daneshyari.com

https://daneshyari.com/en/article/6905780
https://daneshyari.com/article/6905780
https://daneshyari.com

