
Applied Soft Computing 24 (2014) 291–303

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Global optimality of approximate dynamic programming and its use
in non-convex function minimization

Ali Heydaria,∗, S.N. Balakrishnanb

a Mechanical Engineering, South Dakota School of Mines and Technology, United States
b Department of Aerospace Engineering, Missouri University of Science and Technology, United States

a r t i c l e i n f o

Article history:
Received 24 July 2013
Received in revised form 4 February 2014
Accepted 6 July 2014
Available online 18 July 2014

Keywords:
Approximate dynamic programming
Fixed final time optimal control
Neural networks
Non-convex function minimization

a b s t r a c t

This study investigates the global optimality of approximate dynamics programming (ADP) based solu-
tions using neural networks for optimal control problems with fixed final time. Issues including whether
or not the cost function terms and the system dynamics need to be convex functions with respect to their
respective inputs are discussed and sufficient conditions for global optimality of the result are derived.
Next, a new idea is presented to use ADP with neural networks for optimization of non-convex smooth
functions. It is shown that any initial guess leads to direct movement toward the proximity of the global
optimum of the function. This behavior is in contrast with gradient based optimization methods in which
the movement is guided by the shape of the local level curves. Illustrative examples are provided with
single and multi-variable functions that demonstrate the potential of the proposed method.

© 2014 Elsevier B.V. All rights reserved.

Introduction

In the last two decades, approximate dynamics programming
(ADP) has been shown to have a great promise in solving optimal
control problems with neural networks (NN) [1–15]. In the ADP
framework, the solutions are obtained using a two-network syn-
thesis called adaptive critics (ACs) [2–4]. In the heuristic dynamic
programming (HDP) approach with ACs, one network, called the
‘critic’ network, maps the input states to output the cost-to-go and
another network, called the ‘action’ network, outputs the control
with states of the system as its inputs [4,5]. In the dual heuris-
tic programming (DHP) formulation, the action network remains
the same as in the HDP, however, the critic network outputs the
costates with the current states as inputs [2,6,7]. The computation-
ally effective single network adaptive critics (SNAC) architecture
consists of one network only. In [8], the action network was elimi-
nated in a DHP type formulation with control being calculated from
the costate values. Similarly, the J-SNAC [9] eliminates the need for
the action network in an HDP scheme. Note that the developments
in [1–9] are for infinite-horizon problems.

The use of ADP for solving finite-horizon optimal control prob-
lems was considered in [10–15]. Authors of [10] developed a
time-varying neurocontroller for solving a scalar problem with

∗ Corresponding author. Tel.: +1 5732018645.
E-mail addresses: ali.heydari@sdsmt.edu (A. Heydari), bala@mst.edu

(S.N. Balakrishnan).

state constraints. In [11] a single NN with a single set of weights
was proposed which takes the time-to-go as an input along with
the states and generates the fixed-final-time optimal control for
discrete-time nonlinear multi-variable systems. An HDP based
scheme for optimal control problems with soft or hard terminal
constraints was presented in [12]. Finite-horizon problems with
unspecified terminal times were considered in [13–15]. For an
extensive literature on adaptive critic based problems, the reader
is referred to [16] and the references in the chapters.

Despite much published literature on adaptive critics, there still
exists an open question about the nature of optimality of the adap-
tive critic based results. Are they locally or globally optimal? A
major contribution of this study is in proving that the AC based solu-
tions are globally optimal subject to the assumed basis functions.
To help with the development of the proof, the ADP based algo-
rithm for solving fixed-final-time problems developed in [11,12]
is revisited first. After describing the algorithm, a novel analysis of
global optimality of the result is presented. It is shown that with any
cost function with a quadratic control penalizing term, the resulting
cost-to-go function (sometimes called value function) will be con-
vex versus the control at the current time if the sampling time used
for discretization of the original continuous-time system is small
enough, and hence, the first order necessary optimality condition
[17] will lead to the global optimal control. The second major con-
tribution of this paper is in showing that the ADP can be used for
functional optimization, specifically, optimization of non-convex
functions. Finally, through numerical simulations, two examples
with varying complexities are presented and the performance of

http://dx.doi.org/10.1016/j.asoc.2014.07.003
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.07.003
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.07.003&domain=pdf
mailto:ali.heydari@sdsmt.edu
mailto:bala@mst.edu
dx.doi.org/10.1016/j.asoc.2014.07.003

292 A. Heydari, S.N. Balakrishnan / Applied Soft Computing 24 (2014) 291–303

the proposed method is investigated. It is shown that despite the
gradient based methods, selecting any initial guess on the mini-
mum and updating the guess using the control resulting from the
actor, the states will move directly toward the global minimum,
passing any possible local minimum in the path.

The rest of this paper is organized as follows: The problem for-
mulation is given in Section ‘Problem formulation’. The ADP-based
solution is discussed in Section ‘Approximate dynamics program-
ming based solution’. The supporting theorems and analyses are
presented in Section ‘Supporting theorems and analyses’. The use
of the method in static function optimization is discussed in Section
‘Non-convex function optimization’, and the conclusions are given
in Section ‘Conclusions’.

Problem formulation

Let the control-affine dynamics of the system be given by

ẋ(t) = f (x(t)) + g(x(t))u(t) (1)

where f : R
n → R

n, and g : R
n → R

n×m. The state and control vec-
tors are denoted with x ∈ R

n and u ∈ R
n, respectively, where positive

integers n and m denote the dimensions of the respective vectors.
The selected cost function, J is fairly general but quadratic in con-
trol:

J = (x(tf)) +
∫ tf

t0

(Q (x(t)) + u(t)TRu(t))dt (2)

where positive semi-definite smooth functions Q : R
n → R and :

R
n → R penalize the states and positive definite matrix R penalizes

the control effort. The initial and final time are denoted with t0
and tf, respectively. Discretizing the time horizon to N time steps
using sampling time �t leads to the discrete-time dynamics and
cost function as

xk+1 = f̄ (xk) + ḡ(xk)uk, k ∈ K (3)

J = (xN) +
N−1∑
k=0

(Q̄ (xk) + uTk R̄uk) (4)

where K ≡ {0, 1, 2, . . ., N − 1}, N ≡ (tf − t0/�t), xk ≡ x(k�t + t0), f̄ (x) ≡
x + �tf (x), ḡ(x) ≡ �tg(x), Q̄ (x) ≡ �tQ (x), and R̄ ≡ �tR, if Euler inte-
gration is used. The problem is defined as finding a control history
uk ∈ R

m, ∀k ∈ K, such that cost function (4) is minimized subject to
the dynamics given in (3).

Assumption 1. The dynamics of the system do not have finite
escape times. Also, the functions f(x) and g(x) are smooth in x.

Remark 1. In order to use ADP, the continuous-time problem is
discretized. Moreover, the assumption that discrete-time system
(3) is obtained through discretizing a continuous-time problem is
utilized in convergence analysis of the algorithm.

Approximate dynamics programming based solution

In this section, an ADP scheme called AC is used for solving the
fixed-final-time optimal control problem in terms of the network
weights and selected basis functions. The method is adopted from
[11,12]. In this scheme, two networks called critic and actor are
trained to approximate the optimal cost-to-go and the optimal
control, respectively. It should be noted that the optimal cost-to-
go, which represents the incurred cost if optimal decisions are
made from the current time to the final time, at each instant is a

function of the current state, xk, and the current time, k. Denoting
the cost-to-go with J∗

k
(xk), one has

J∗k(xk) = (xN) +
N=1∑
k̄=k

(Q̄ (xk̄) + u∗T
k̄
R̄u∗T
k̄

) (5)

where u∗
k

denotes the optimal control at time k given the current
state xk. The solution to the problem is given by the Bellman
equation [18] as

J∗N(xN) = (xN) (6)

J∗k(xk) = Q̄ (xk) + u∗T
k R̄u

∗
k + J∗k+1(x∗

k+1), k ∈ K (7)

u∗
k = argminuk ∈ Rm (Q̄ (xk) + uTk R̄uk + J∗k+1(f̄ (xk) + ḡ(xk)uk)), k ∈ K(8)

where x∗
k+1(f̄ (xk) + ḡ(xk)u∗

k
). Applying the first order optimality

condition [4,17], Eq. (8) leads to

u∗
k = −1

2
R̄−1ḡ(xk)

T∇J∗k+1(x∗
k+1), k ∈ K (9)

where ∇J∗
k+1(x∗

k+1) denotes gradient (∂J∗
k+1(xk+1)/∂xk+1) evaluated

at x∗
k+1 and formed as a column vector.
An iterative learning scheme can be derived from Bellman equa-

tion for finding the solution to the fixed-final-time problem once
Eq. (9) is replaced with [12]

ui+1
k

= −1
2
R̄−1ḡ(xk)

T∇J∗k+1(f̄ (xk) + ḡ(xk)u
i
k), k ∈ K (10)

Superscript i denotes the index of iteration which starts with an ini-
tial guess on u0

k
, k∈K. The converged value of ui

k
in (10) is denoted

with u∗
k

and used in (7). Note that in a dual network AC scheme for
finite horizon optimal control, ‘iterations’ takes place in the train-
ing of the actor, as seen in (10). Once state-control relationship is
learned, the optimal cost-to-go is obtained in a ‘one-shot’ process
as given in (7).

Denoting the approximated optimal cost-to-go and the approx-
imated optimal control in a feedback form with Jk(xk) and uk(xk),
respectively, and selecting linear in the weights NNs, the expres-
sions for the actor (control) and the critic (cost), can be written
as

uk(x) = VTk �(x), k ∈ K (11)

Jk(x) = WT
k �(x), k ∈ K ∪ {N} (12)

where Vk ∈ R
p×m and Wk ∈ R

q are the unknown weights of the actor
and the critic networks at time step k, respectively, and the selected
smooth basis functions are given by � : R

n → R
p and � : R

n → R
q

where p and q denote the number of neurons. The idea is using
Eqs. (6), (7), and (10) to find the NN weights. Note that, once J∗

k+1(·)
is known one can use (10) to find u∗

k
(.) and then (7) gives J∗

k
(.).

Therefore, starting with (6) to find J∗N(.), all the unknowns can be cal-
culated in a backward in time fashion, i.e., from k = N − 1 to k = 0. The
learning process for calculating weights Vk and Wk, ∀k is detailed
through Algorithm 1. Note that ∇�(x) ≡ (∂�(x)/∂x) is a column vec-
tor.

Download English Version:

https://daneshyari.com/en/article/6905780

Download Persian Version:

https://daneshyari.com/article/6905780

Daneshyari.com

https://daneshyari.com/en/article/6905780
https://daneshyari.com/article/6905780
https://daneshyari.com

