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a  b  s  t  r  a  c  t

Preference  articulation  in multi-objective  optimization  could  be  used  to improve  the  pertinency  of
solutions  in  an approximated  Pareto  front.  That  is, computing  the  most  interesting  solutions  from  the
designer’s  point  of  view  in  order  to  facilitate  the  Pareto  front  analysis  and  the selection  of  a  design  alterna-
tive.  This  articulation  can  be achieved  in  an  a priori,  progressive,  or a posteriori  manner.  If  it is  used  within
an a priori  frame,  it could  focus  the  optimization  process  toward  the  most  promising  areas  of  the  Pareto
front,  saving  computational  resources  and  assuring  a useful  Pareto  front  approximation  for  the  designer.
In  this  work,  a physical  programming  approach  embedded  in  an  evolutionary  multi-objective  optimiza-
tion  is presented  as  a tool  for  preference  inclusion.  The  results  presented  and  the  algorithm  developed
validate  the  proposal  as  a potential  tool  for engineering  design  by  means  of  evolutionary  multi-objective
optimization.

©  2014  Elsevier  B.V.  All  rights  reserved.

Introduction

Multi-objective optimization design (MOOD) procedures are
generate first choose later (GFCL) holistic strategies for multi-
objective problems [1]. A multi-objective problem (MOP) arises
when multiple objectives and requirements must be fulfilled by
the designer. Such objectives are usually in conflict with each other;
therefore a trade-off solution must be calculated and selected for
implementation. The GFCL strategy generates a set of potentially
preferable design alternatives and the decision maker (DM or sim-
ply the designer) selects the most preferable solution according to
his or her preferences. These solutions are generally Pareto optimal
solutions [2].

The MOOD procedure (see Fig. 1) identifies three main (possibly
fundamental) steps [3,4]: the MOP  definition (measure); the multi-
objective optimization process (search); and the multi-criteria
decision making (MCDM) step (decision making). Major efforts are
made to improve the algorithms and tools to facilitate the two latter
processes.
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In the case of multi-objective optimization, several algorithms
have been designed (NBI [5], NNC1 [6,7], NSGA-II2 [8], MOGA3 [9],
MOEA/D4 [10] for example) and used in a wide variety of applica-
tions [11–24]. Such algorithms mainly seek a set of Pareto optimal
solutions that describe a Pareto front approximation. According to
the designer’s wishes, those algorithms would incorporate some
desirable characteristics [23] such as convergence (capacity to
reach the Pareto front), diversity (capacity to generate different
solutions), and pertinency (capacity to generate useful solutions for
the DM). For the decision making step, several tools and visualiza-
tions approaches [25] have been proposed over the years (scatter
plot diagrams, parallel coordinates [26], level diagrams [27,28] or
self-organizing maps [29] for example).

In [30,31] the importance of considering both processes (opti-
mization and selection) in a holistic way, in order to guarantee a
full embedment of the DM in the decision making step, was  noted.
This is because the decision making process is usually more time

1 Matlab code available at http://www.mathworks.com/matlabcentral/
fileexchange/38976.

2 Source code available at: http://www.iitk.ac.in/kangal/codes.shtml; also, a vari-
ant of this algorithm is available in the global optimization toolbox of Matlab.

3 Toolbox for Matlab available at http://www.sheffield.ac.uk/acse/research/ecrg/
gat.

4 Matlab code available at http://cswww.essex.ac.uk/staff/zhang/IntrotoResearch/
MOEAd.htm.
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Fig. 1. A multi-objective optimization design (MOOD) procedure.

consuming than the optimization step [32]. This embedment could
be achieved by providing a useful set of solutions to the designer;
thereby analysing the trade-off between conflicting objectives in
order to refine his or her final selection [30].

Given that the MOOD procedure should be a holistic technique,
preference handling mechanisms could play a major role in bridg-
ing the gap between optimization and the selection process. These
mechanisms will enable the algorithm to approximate a Pareto
front with pertinent solutions in the search process; and there-
fore facilitating the DM’s task of analysing and selecting a design
alternative [33]. Furthermore, preference handling might be used in
constrained optimization instances and many-objective optimiza-
tion statements [34]. Challenges for preference articulation include
building a practical framework to link the designer’s desired trade-
off with the cost function to optimize.

A first step for the aforementioned challenge, is stating mean-
ingful design objectives. Sometimes with classical optimization
approaches a cost function (or objective) is built in order to sat-
isfy a set of requirements such as convexity and/or continuity;
that is, it is built from the point of view of the optimizer despite
a possible loss of interpretability. The usage of more interpretable
objectives facilitates the inclusion of preferences in the optimiza-
tion process, producing meaningful and pertinent solutions for the
designer in the selection step. Evolutionary multi-objective opti-
mization (EMO) provides a helpful framework for this purpose,
since multi-objective evolutionary algorithms (MOEAs) have been
shown to be a flexible tool to handle constrained complex functions
[32] in a wide variety of engineering domain applications [11]. Fur-
thermore, a convenient feature of using MOEAs is the possibility
of selecting more interpretable objectives for the designer. That is,
the objective selection could be closer to the point of view of the
designer, rather than the optimizer. Nevertheless, this is just a nec-
essary step to moving forward to preference articulation, since this
could assure meaningful, but not pertinent, design alternatives.

The physical programming (PP) method [35] is very suitable
for multi-objective engineering design since it formulates design
objectives in an understandable and intuitive language for design-
ers. Since it defines desirable, tolerable, and undesirable ranges for
individual objectives, it becomes a potential technique to improve
the pertinency of solutions in multi-objective optimization. PP has
been merged previously with classical optimization techniques
[1,36]; nevertheless, it remains an interesting topic to merge with
MOEAs.

In this work, PP is merged with MOEAs as an auxiliary mecha-
nism to improve the pertinency of the calculated solutions. Such an
approach will enable the DM to have more useful solutions, since
it provides a flexible and intuitive coding framework where the
MOP is built from the DM’s point of view. Although an algorithm

to test its viability is developed, it could be incorporated in other
MOEAs. The remainder of this work is as follows: in the section
“Background” several preliminaries in multi-objective optimiza-
tion, physical programming, and the MOEA are presented. In the
section “Pertinency improvement by means of GPP” the preference
handling mechanism is explained, and then evaluated in the sec-
tion “Experimental setup”. Finally, some concluding remarks are
given.

Background

To state the proposal, some notions on multi-objective opti-
mization, preference handling, physical programming, and the
algorithm to be used are required. Those are provided below.

Multi-objective optimization review

As referred in [2], a MOP,5 can be stated as follows:

min
�

J(�) = [J1(�), . . .,  Jm(�)] (1)

subject to

K(�) ≤ 0 (2)

L(�) = 0 (3)

�i ≤ �i ≤ �i, i = [1,  . . .,  n] (4)

where � = [�1, �2, . . .,  �n] is defined as the decision vector with
dim(�) = n; J(�) as the objective vector and K(�), L(�) as the
inequality and equality constraint vectors, respectively; �i, �i are
the lower and upper bounds in the decision space.

It has been pointed out that there is not a single solution in MOPs,
because there is not generally a better solution in all the objectives.
Therefore, a set of solutions, the Pareto set, is defined. Each solution
in the Pareto set defines an objective vector in the Pareto front. All
the solutions in the Pareto front are a set of Pareto optimal and
non-dominated solutions:

Definition 1 (Pareto optimality [2]). An objective vector J(�1) is
Pareto optimal if there does not exist another objective vector J(�2)
such that Ji(�2) ≤ Ji(�1) for all i ∈ [1, 2, . . .,  m] and Jj(�2) < Jj(�1) for at
least one j, j ∈ [1, 2, . . .,  m].

5 A maximization problem can be converted to a minimization problem.
For  each of the objectives that have to be maximized, the transformation:
max  Ji(�) = − min(− Ji(�)) could be applied.
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