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a  b  s  t  r  a  c  t

Surrogate-assisted  evolutionary  optimization  has  proved  to  be effective  in  reducing  optimization  time,  as
surrogates,  or meta-models  can  approximate  expensive  fitness  functions  in the optimization  run.  While
this is  a successful  strategy  to improve  optimization  efficiency,  challenges  arise  when  constructing  sur-
rogate  models  in  higher  dimensional  function  space,  where  the  trade  space  between  multiple  conflicting
objectives  is  increasingly  complex.  This complexity  makes  it difficult  to ensure  the  accuracy  of  the  sur-
rogates.  In  this  article,  a  new  surrogate  management  strategy  is  presented  to address  this  problem.  A
k-means  clustering  algorithm  is  employed  to  partition  model  data  into  local  surrogate  models.  The  vari-
able fidelity  optimization  scheme  proposed  in  the  author’s  previous  work  is revised  to  incorporate  this
clustering  algorithm  for surrogate  model  construction.  The  applicability  of  the proposed  algorithm  is
illustrated  on  six  standard  test  problems.  The  presented  algorithm  is  also  examined  in  a  three-objective
stiffened  panel  optimization  design  problem  to show  its  superiority  in surrogate-assisted  multi-objective
optimization  in  higher  dimensional  objective  function  space.  Performance  metrics  show  that  the  pro-
posed  surrogate  handling  strategy  clearly  outperforms  the  single  surrogate  strategy  as the surrogate  size
increases.

©  2014  Published  by  Elsevier  B.V.

Introduction

In contemporary engineering design, the ability to rapidly understand trade-
offs between multiple conflicting objectives is emphasized. Multi-objective genetic
algorithms (MOGA) are able to find the Pareto front in a single optimization run,
making them attractive to solve this type of problems. A non-dominated sorting
genetic algorithm (NSGA-II) proposed by Deb et al. [1], along with other MOGAs
published, have proved to be very robust in converging to the true Pareto optimal
sets. In recent years, MOGA have seen wide spread applications to marine structures
optimization. Despite displaying robust performance in multi-objective optimiza-
tion,  genetic algorithms are often slow to execute, since genetic algorithms can
require a large amount of fitness function evaluations to determine domination sta-
tus. This is especially true when time-consuming high fidelity models are used for
objective functions. Surrogate-assisted MOGA optimization is a potential solution to
this problem. In surrogate-assisted optimization, computationally efficient approx-
imation models are constructed to replace the original computationally expensive
fitness functions. This article introduces a technique of using k-means clustering in
variable-fidelity optimization to assist surrogate model construction as surrogate
model size increases.

Several successful surrogate model techniques have been reported in litera-
ture to date. These include the response surface methodology [2], artificial neural
networks [3], and Kriging models [4]. Kriging was originally presented to assist opti-
mization in Sacks’s work [4]. Kneijien [5] provides a more recent review paper for
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Kriging models used in optimization. Owing to its stochastic process framework,
Kriging models provide both an estimation of fitness value and a model error estima-
tion. Due to this error estimation property, Kriging models are popularly employed
as  a surrogate model in optimization.

To replace an objective function, the surrogate model must be accurate and effi-
cient. Various model managements in surrogate-assisted evolutionary algorithms
have been developed for this task. In a previous paper, the authors put forward a
novel variable fidelity optimization (VFO) method [6], in which a Kriging surrogate
model was  constructed online to scale a low fidelity version of the fitness function
to  a high fidelity version of the same function. The VFO method schedules the high-
fidelity simulations in given generations so that it uses only a fixed computational
budget while converging close to the true Pareto front. This method was demon-
strated on the ZDT standard test problems as well as a two-objective structural
design problem. However, the previous method becomes inefficient and struggles
to converge when the number of objectives is increased beyond two. A key reason
for  this struggle is the increasingly large size of the Kriging model needed for larger
problems.

In  the development of the VFO approach, the Kriging model is constructed
around the evolving Pareto set in the optimization run. As the optimization problem
moves to a higher number of objectives, the location of non-dominated solutions
in  the independent variable space becomes more diverse. To maintain accuracy,
more points are required causing the surrogate model size to consequently increase.
The challenge can increase when the number of independent variables increases as
well. During the Kriging modeling process, an N*N matrix (N is the total number
of data points) will be inverted. Thus computational cost grows quickly with sam-
ple size. Jin et al. [7] have indicated that Kriging model construction can be very
time-consuming for large sample sizes. In addition, solving an extremely
large Kriging model can be numerically unstable as the matrix become
nearly singular, in which case, the Kriging predictions are unlikely to be
reliable.
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Researchers have suggested using multiple surrogates in place of the single sur-
rogate model to improve prediction quality. Jin and Sendhoff [8] have proposed
using neural network ensembles to improve the performance of surrogate-assisted
evolutionary optimization. In the works of Goel et al. [9] and Sanchez et al. [10], the
benefits of using multiple surrogates have also been reported empirically. Hamza
and Saitou [11] have used polynomial surrogate ensembles in genetic algorithm for
vehicle crash-worthiness design. Isaacs et al. [12] used spatially distributed multi-
ple radius basis function surrogates for multi-objective optimization. Within their
study, a fraction of the total sample points in each sub-surrogate were used for mod-
eling, while the rest points were used for accuracy validation. However, there is not
a  solution proposed to deal with the large surrogate modeling problem that variable
fidelity optimization scheme has faced.

In  this article, multiple surrogate models are used to improve the ability of the
proposed VFO method to tackle larger problems. However, some means to deter-
mine how to split a single large Kriging model into multiple Kriging models is
needed. Clustering is an attractive technique for this purpose and has been widely
employed for data mining. In clustering, a large dataset is separated into subsets
that are in some sense more closely related to each other than the other members
of  the overall data set. The advantage of clustering is that the algorithm can per-
form this separation without external guidance, making it ideal for inclusion in an
automated optimization procedure. A k-means clustering algorithm is employed to
partition the Kriging sample dataset, then multiple Kriging models are built in each
of  these partitions. This approach helps avoid solving large Kriging models, thus
keeps the surrogate-assisted optimization efficient. The proposed clustering imple-
mented method is believed to be helpful in a broader means of large sampling size
surrogate model management problems other than Kriging.

The remainder of the paper is organized as follows. Next section outlines theQ2
basic of variable fidelity optimization approach with the new proposed clustering
algorithm implemented Kriging modeling method. Subsequent section examines
the  proposed method using a series of benchmarking optimization problems, includ-
ing comparisons with problems solved by the previous version of the method.
Stiffened panel design section shows the implementation of the proposed method
in  a three-objective structure design problem. Conclusions and future work are
discussed in last section.

Variable fidelity optimization using multiple Kriging
surrogates

Overview

The approach proposed by Zhu et al. [6] is used here as surrogate
model management framework to facilitate multi-objective opti-
mization. Usually in the real-world design optimization problems,
there are various simulation functions for fitness evaluation with
different levels of fidelity. As high-fidelity evaluations are more
time-consuming, there is a need to trade fidelity with computa-
tional cost in optimization design. In the author’s previous work [6],
a variant on Haftka’s [13] global-local approach was shown to work
well in approximating the Pareto front with fewer high-fidelity fit-
ness function calls. In the proposed variable-fidelity approach, the
high-fidelity function fh(x) could be approximated by a global sim-
plified structure method fg(x) and a Kriging correction model ff(x),
as shown in Eq. (1)

fh(x) = fg(x) ∗ ff (x) (1)

In this formulation, we proposed that the global approxima-
tion mathematical model is a simplified function that runs rapidly
with a relatively high coefficient of variation (COV) in the bias of its
prediction. The bias of the prediction is defined as:

bias = predicted
actual

(2)

This leads to a bias of 1.0 for perfect approximation, and a bias
below or above 1.0 for less accurate estimation methods. The VFO
formulation takes advantage of the fact that the genetic algorithm
starts off with random population, so lower fidelity can be used
to evolve a rough Pareto front. While in this process, interpolation
surrogate model can be constructed online. Afterwards, the surro-
gate model can be used to transition the rough Pareto front to an
approximation of the true Pareto front. The detailed implementa-
tion of the proposed VFO with clustered multiple Kriging models
will be introduced in the following paragraphs.

Fig. 1. Flow chart of the method.

Revised variable fidelity scheme

The variable fidelity-updating scheme proposed in the previous
section was  implemented in the standard NSGA-II multi-objective
genetic algorithm [1]. The VFO strategy used here is based on that
which was proposed in Zhu et al. [6], parts of the description from
that reference are summarize below. The major difference is in the
Kriging model construction, where multiple Kriging surrogates are
built with the help of k-means clustering algorithm. Fig. 1 shows
the steps of the method to be followed, each step is explained in
detail below. The numerical implementation details of the tech-
niques employed for each of these steps is explained in subsequent
subsections.

A detailed process of the revised VFO updating strategy using
multiple Kriging models is described as follows:

1. To initialize the optimization, a random population is selected.
The first few generations only use the low-fidelity model for fit-
ness evaluation. A rough Pareto front is evolved based on the low
fidelity model.
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