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a  b  s  t  r  a  c  t

Portfolio  optimization  involves  the  optimal  assignment  of  limited  capital  to different  available  financial
assets  to achieve  a reasonable  trade-off  between  profit  and  risk  objectives.  In  this  paper,  we studied  the
extended  Markowitz’s  mean-variance  portfolio  optimization  model.  We  considered  the  cardinality,  quan-
tity, pre-assignment  and  round  lot  constraints  in the  extended  model.  These  four  real-world  constraints
limit  the  number  of  assets  in a portfolio,  restrict  the minimum  and  maximum  proportions  of  assets  held  in
the portfolio,  require  some  specific  assets  to  be included  in the  portfolio  and  require  to  invest  the  assets  in
units of a certain  size  respectively.  An efficient  learning-guided  hybrid  multi-objective  evolutionary  algo-
rithm is proposed  to solve the  constrained  portfolio  optimization  problem  in the  extended  mean-variance
framework.  A  learning-guided  solution  generation  strategy  is  incorporated  into  the  multi-objective  opti-
mization  process  to promote  the efficient  convergence  by guiding  the  evolutionary  search  towards  the
promising  regions  of the  search  space.  The proposed  algorithm  is  compared  against  four  existing  state-
of-the-art  multi-objective  evolutionary  algorithms,  namely  Non-dominated  Sorting  Genetic  Algorithm
(NSGA-II),  Strength  Pareto  Evolutionary  Algorithm  (SPEA-2),  Pareto  Envelope-based  Selection  Algorithm
(PESA-II)  and  Pareto  Archived  Evolution  Strategy  (PAES).  Computational  results  are  reported  for  publicly
available  OR-library  datasets  from  seven  market  indices  involving  up to 1318  assets.  Experimental  results
on the  constrained  portfolio  optimization  problem  demonstrate  that  the  proposed  algorithm  significantly
outperforms  the  four  well-known  multi-objective  evolutionary  algorithms  with  respect  to  the  quality  of
obtained  efficient  frontier  in  the conducted  experiments.

©  2014  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Portfolio selection problem is a well-studied topic in finance
and it is concerned with the optimal allocation of a limited capi-
tal among a finite number of available risky assets, such as stocks,
bonds, and derivatives in order to gain the possible highest future
wealth. Markowitz’s mean-variance model [40,41] is considered
to play an important role in the development of Modern Portfo-
lio Theory. The mean-variance (MV) model assumes that the future
market of the assets can be correctly reflected by the historical mar-
ket of the assets. It considers the trade-off between risk and reward
in selecting efficient portfolios. A portfolio is considered to be effi-
cient if it provides the highest possible reward for a given risk or
alternatively, if it presents the least possible risk for a given level
of profit. The reward (profit) of the portfolio is measured by the
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average expected return of those individual assets in the portfolio
whereas the risk is measured by its combined total variance.

While investing the capital within the MV  framework, investors
have two objectives: maximizing the total profit and minimiz-
ing the total risk of their portfolios. With these two conflicting
objectives to be optimized simultaneously, the portfolio selection
problem can be classified as a multi-objective optimization prob-
lem. A single solution that optimizes all the conflicting objectives
simultaneously hardly exists in practice. Instead, there exists a set
of acceptable ‘compromise’ solutions which are optimal in such a
way that no other solutions are superior to them when all objec-
tives are considered simultaneously. Such solutions are referred
to as efficient solutions, non-dominated solutions or Pareto-optimal
solutions.

The collection of such efficient portfolios conveying the com-
promise between risk and return is called the efficient frontier
or Pareto-optimal front. The efficient frontier helps investors to
visualize the risk and return trade-off curve in a two-dimensional
graph with risk on the horizontal axis and expected return on the
vertical axis (see Fig. 13).
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Since the Markowitz’s pioneering work, many researchers have
pursued studies for efficient algorithms [27,29,43,52] to compute
the efficient frontier of the MV  model. However, the classic MV
model assumes a perfect market where short sales are disallowed,
securities can be traded in any (non-negative) fractions, no limi-
tation on the number of assets in the portfolio, investors have no
preferences over assets and they do not care about different assets
types in their portfolios. In practice, these assumptions are unre-
alistic. As a result, several extensions and modifications have been
proposed to address the real-world constraints. In this paper, we
extended the basic MV  model to include four practical constraints
as follows:

Cardinality constraint

Cardinality constraint limits the number of assets (K) that com-
pose the portfolio. Very often in practice, investors prefer to have
a limited number of assets included in their portfolio since the
management of many assets in the portfolio is tedious and hard
to monitor. They also intend to reduce transaction costs and/or to
assure a certain degree of diversification by limiting the maximum
number of assets in their portfolios.

Floor and ceiling constraints

The floor and ceiling constraints specify the minimum and max-
imum limits on the proportion of each asset that can be held in a
portfolio. In practice, investors prefer to avoid excessive admin-
istrative costs for very small holdings of assets in the portfolio
and/or some institutional policies require to model their policies
on the lower and upper bounds of each asset in the portfolio. The
floor and ceiling constraint is also known as bounding or quantity
constraints.

Pre-assignment constraint

The pre-assignment constraint is usually used to model the
investor’s subjective preferences. An investor may  intuitively wish
some specific assets to be included in the portfolio, with its propor-
tion fixed or to be determined.

Round lot constraint

Round lot constraint requires the number of any asset in the
portfolio to be in exact multiple of the normal trading lots. In
practice, several market securities are traded as multiples of mini-
mum lots.

These four constraints stated above are hard in the sense that
they have to be satisfied at any time. In practice, portfolios are com-
posed of markets with hundreds to thousands of available assets,
and the calculation of risk measures grows quickly in relation to the
number of assets. By introducing the cardinality constraint alone
already transforms the classic quadratic optimization model into
a mixed-integer quadratic programming problem which is an NP-
hard problem [6,47]. There are several exact approaches proposed
in the literature for cardinality constrained portfolio optimization
problem [5,6,35,47]. However, all these works relaxed the cardi-
nality constraint as an inequality constraint allowing the number
of assets in the portfolio to vary with maximum bound (K) and the
results showed that they are able to handle the test problems with
limited size (up to 500 assets). On the other hand, Gulpinar et al.
[26] considered the strict cardinality constraint and computational
results are performed on a small test problem involving 98 assets.

When additional constraints are added to the basic MV model,
the problem thus becomes more complex and the exact opti-
mization approaches run into difficulties to deliver solutions
within reasonable time for large problem size. As a result, this

motivates the investigation of approximate algorithms such as
meta-heuristics [33] and hybrid meta-heuristics [56,45]. In general,
meta-heuristics cannot guarantee the optimality of the solution,
but they are efficient in finding the optimal or near optimal solu-
tions in a reasonable amount of time.

There exist many studies which applied meta-heuristics or other
techniques to solve portfolio optimization problem [21,39]. The
recent research in portfolio optimization problem is widely car-
ried out by incorporation of constraints in the problem model
and/or handling the problem as a multi-objective one. Although the
portfolio optimization problem involves two conflicting objectives,
many studies in the literature [11,17,20,37] have been performed
as single objective meta-heuristics approaches with aggregating
function that combines two objectives into a single scale objec-
tive, and in which the weights are varied to generate the set of
efficient solutions for portfolio selection problems with cardinal-
ity and quantity constraints. Mansini and Speranza [38] showed
that the portfolio selection problem with round lot constraint is
an NP-complete problem and proposed three mixed integer linear
programming heuristic algorithms to solve the problem. Lin and
Liu [36] proposed a genetic algorithm with three different models
for portfolio selection problems with round lots. Chang et al. [11]
and Gaspero et al. [25] discussed the pre-assignment briefly but
had not addressed the constraint in their experiments.

In recent years, many publications had discussed the port-
folio optimization problems with multi-objective evolutionary
algorithms by considering a subset of the real-world constraints.
Diosan [22] and Mishra et al. [42] applied several well-known
multi-objective evolutionary algorithms to solve the unconstrained
portfolio optimization problem. Recently, Krink et al. [34] also
proposed an algorithm called DEMPO inspired by the NSGA-II algo-
rithm [19]. The difference between NSGA-II and DEMPO is that
Differential Evolution (DE) is used instead of Genetic Algorithm
(GA) to generate new candidate solutions during the evolution.
DEMPO is applied to solve the basic portfolio optimization prob-
lem based on Value-at-Risk risk measure and experimental results
show that DEMPO outperforms NSGA-II. Armananzas and Lozano
[3] studied greedy search, simulated annealing (SA) and ant colony
optimization (ACO) algorithms in a multi-objective framework to
solve the portfolio selection problem with cardinality constraints.

Anagnostopoulos and Mamanis [2] considered the extended MV
model with cardinality and quantity constraints and tested five
advanced MOEAs to investigate the performance. The cardinality
constraint considered in their work is relaxed and as a result a
portfolio can be composed of any number of assets with maximum
bound (K). The experimental results confirmed that all multi-
objective algorithms considered outperformed the single objective
evolutionary algorithm. The results also concluded that SPEA-II [60]
performed the best among those algorithms tested. Branke et al. [7]
also presented an envelope-based MOEA integrating the NSGA-II
[18] and the critical line algorithm. Chaim et al. [12] proposed an
order-based solution representation and considered the cardinal-
ity constraint as a soft constraint and quantity constraint as a hard
constraint. In their work, the cardinality constraint was  relaxed and
hence it was allowed to vary the number of assets in the portfolio
from the minimum limit to the maximum limit.

Streichert et al. [55,54] applied a multi-objective evolution-
ary algorithm (MOEA) to solve the portfolio selection problems
with cardinality, floor and round lot constraints. These works
studied various crossover operators adopting hybrid chromosome
representation with binary and real values. This hybrid encoding
enhances the performance of the algorithm significantly regard-
less of the choice of crossover operators. Skolpadungket et al. [50]
also studied the portfolio selection problems with cardinality, floor
and round lot constraints and tested them with various MOEAs.
They adopted the same hybrid encoding as Streichert et al. [55,54].
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