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a  b  s  t  r  a  c  t

In this  study,  stochastic  computational  techniques  are  developed  for the  solution  of  boundary  value
problems  (BVPs)  of  second  order  Pantograph  functional  differential  equation  (PFDE)  using  artificial  neu-
ral networks(ANNs),  simulated  annealing  (SA),  pattern  search  (PS),  genetic  algorithms  (GAs),  active-set
algorithm  (ASA)  and  their  hybrid  combinations.  The  strength  of  ANNs  is  exploited  to construct  a  model
for PFDE  by  defining  as  unsupervised  error  to approximate  the solution.  The  accuracy  of  the  model  is sub-
jected  to find  the appropriate  design  parameters  of the  networks.  These  optimal  weights  of  the  networks
are  trained  using  SA, PS and GAs,  used  as  a tool  for viable  global  search,  hybridized  with  ASA  for  rapid
local  convergence.  The  designed  schemes  are  evaluated  by  solving  a numbers  of BVPs  for  the  PFDE and
comparing  with  standard  results.  The  reliability  and  effectiveness  of the  proposed  solvers  are  investigated
through  Monte-Carlo  simulations  and  their  statistical  analysis.

© 2014  Published  by  Elsevier  B.V.

Introduction

The functional differential (FD) equations illustrate the proper-
ties of dynamical processes for which the motion is dependent on
their prior history and anticipated future of the states of these pro-
cesses. The importance and significance for such processes is well
established branch of non-linear analysis. Stability for large scale
systems described by FD equations include the model of large class
of electrical networks developed for linearly lumped parameter ele-
ments and non-linear memory-less elements with RC lines [1,2],
and the model for population dynamics [3,4]. There are a number of
classical, as well as, modern applications addressed by FD equations
including stability and buffrication of genetic regulatory networks
models [5], identifiability analysis for linear time-delay systems
[6], stability of non-linear quasi-monotone dynamical systems [7],
direct adaptive control model for parameter information content of
measurable signals [8], dynamic model of global exponential stabil-
ity for Cellular Neural networks [9], models for quantization, time
delays, stability of non-linear control systems [10], Non-linear SISO
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system model to control the tracking error of funnel with saturation
[11], and modeling for synchronization of multi-perturbation delay
chaotic systems using dual-stage impulsive control [12]. Further
applications can be seen elsewhere [13,14].

The well-known Pantograph equations belong to the class of FD
equations with proportional delay. The origin of the name Panto-
graph belongs to Ockendon and Tayler [15] on their premier work
for collection of current by the Pantograph head of an electric loco-
motive. Such type of systems arise in variety of applications of
adaptive control, number theory, electrodynamics, astrophysics,
nonlinear dynamical systems, probability theory on algebraic struc-
ture, quantum mechanics, cell growth, engineering, economics and
etc. [15–19]. The research community has been attracted to inves-
tigate the solutions of such kind systems since its origin till to date.

The existing numerical solvers for two-point boundary value
problem associated with such second order systems are based on
finite differences approach [20], Chebyshev polynomials method
[21], variational techniques [22], Runge–Kutta–Nystrom methods
[23], Homotopy perturbation method [24], spline functions [25],
Richardson extrapolation approach [26], Adomian decomposition
method [27,28], shooting techniques [29], and piecewise polyno-
mial collocation method [30]. All these techniques have their own
strengths and weaknesses over other solvers in terms of accuracy,
convergence, reliability and robustness. As far as our literature
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survey is concerned only these type solvers are used for such system
while stochastic solvers have not yet been applied in this area.

Applied soft computing techniques based on neural networks,
evolutionary computing and swarm intelligence methods have
been used extensively for solving linear and non-linear systems
associated with ordinary and partial differential equations [31–34].
For example, these methodologies provides reliable solution to
Van der Pol nonlinear oscillators [35], Troesch’s problem arises in
plasma physics [36], Nonlinear singular systems based on Emden
Fowler equations [37], first Painlevé transcendent [38], the non-
linear Schrodinger equations [39], fluid flow problems [40,41]
and Nonlinear Bratu’s problems arising in fuel ignition model of
combustion theory [42], etc. Interested reader is referred to sur-
vey article [43], which summarized the research of numerous
scholars mostly within the last decade to get a better knowledge
about the present research scenario. Recently, these techniques
are also extended to solve the systems based on linear and non-
linear ordinary fractional differential equations as well [44,45].
For instant, practical applications of well-known fractional order
systems linked with Riccati equation, as well as, Bagley–Torvik
equations have also been solved effectively [46,47]. These are
motivation factors for the authors to investigate and analyze the
heuristic techniques to solve FD equations, particularly the bound-
ary values problems of Pantograph type.

In this paper, numerical solution for the two  point boundary
value problems (BVP) of Pantograph FD equations is presented
using stochastic techniques. The generic form of second order FD
equation can be given as below:⎧⎨
⎩

d2y(t)
dt2

= f (t, y(t), y(x(t))), t ∈ (0,  T)

y(0) = b, y(T) = c

(1)

where T > 0, (b, c)∈ ϕ and x: [0, T] → ϕ is such that 0 ≤ x(t) ≤ T, for t ∈
[0,T]. The case x(t) = �t with � the proportional factor, corresponds
to second order Pantograph equation. To approximate the equation,
feed-forward artificial neural networks (ANNs) are appropriately
combined to define an objective function. The weights of these
networks are optimized to minimize the objective function value
with help of SA, PS, GAs, ASA, SA hybridized with ASA (SA-ASA), PS
combined with ASA (PS-ASA), GA hybridized with ASA (GA-ASA)
techniques. The accuracy, reliability, effectiveness of these schemes
is investigated through Monte-Carlo simulations and their statisti-
cal analysis. Comprehensive studies of stochastic solvers are made
on the basis of time of execution, convergence and level of accu-
racy achieved. The comparison of the proposed solutions is made
with exact solutions, as well as, with recently developed numerical
technique based on successive interpolation [48].

Organization of the paper is as follows. In Mathematical
Modelling Section, neural networks mathematical model for Panto-
graph FD equation is presented. In Learning Methodologies Section,
introductory material is provided for solvers along with parame-
ter setting used for training of weights of networks. In Numerical
Experimentations Section, results are presented for numerical
experimentation carried out with proposed schemes. In Compar-
ative Analysis of Results Section, the discussion on comparative
analyses and computational complexity of the proposed solvers is
provided. Last section concludes our findings and also provides the
future recommendations.

Mathematical modeling

In this section, mathematical modeling of Pantograph equation
is presented. Linear combinations of feed-forward ANNs are used.
Log-sigmoid is used as activation function in neural network archi-
tecture.

In case of ordinary differential equations the following con-
tinuous mapping is applied to approximate solution y(t), and its
derivatives as [49,50]⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ŷ(t) =
k∑

i=1

˛ig(wit + ˇi),

dn

dtn
ŷ(t) =

k∑
i=1

˛i
dn

dtn
g(wit + ˇi),

(2)

where ˛,  ̌ and w represent the unknown constants, called neu-
ral network weights, k is number of neurons and g is log-sigmoid
activation function given as g(t) = 1/(1 − e−t).

Mathematical model for FD equations can be formulated as an
extension of the networks given in Eq. (2) by replacing independent
variable t with a function x(t). Therefore, the approximate neural
networks models for solution y(t) and its derivatives of the equation
can be given in modified form as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ŷ(x(t)) =
k∑

i=1

˛ig(wix(t) + ˇi),

dn

dtn
ŷ(x(t)) =

k∑
i=1

˛i
dn

dtn
g(wix(t) + ˇi),

(3)

Linear combination of the networks given in equations (3) can
model the FD equations provided the unknown weights are prop-
erly optimized and it is named as FD equations neural (FDEN)
network. The network given in equations (3) has a varied response
by taking different relation of x(t). For example, by taking x(t) = t, the
networks for FD Eq. (3) is similar to networks of ordinary differen-
tial equations given in (2). By taking x(t) = �t the networks provided
in (3) are used to model Pantograph differential equations. Simi-
larly, by using x(t) = t − �, this network is used to model the � time
delay differential equations. The FDEN network architecture for one
of the form of Eq. (1) using f = t + y(t) + y(x(t)) is shown graphically
in Fig. 1.

The objective function ε is given as:

ε = ε1 + ε2, (4)

where M is the total number of iterations. The value ε1 is associated
with FD equations and it is given below in case of (1) using the
networks provided in Eq. (3) as:

ε1 = 1
N + 1

N∑
m=0

(
d2ŷm

dt2
− f (tm, ŷm, ŷ(xm))

)2

, t ∈ (0,  T)

N = 1/h, ŷm = ŷ(tm), xm = x(tm), tm = mh,

(5)

where the interval t ∈ [0,T] is divided into N number of steps
t ∈ (t0 = 0, t1 = 0.1, t2 = 0.2, . . .,  tN = T) with step size h, ŷ(t) and d2ŷ/dt2

are FDEN networks given by set of Eq. (2). Similarly, the value ε2
associated with boundary conditions can be written as:

ε2 = 1
2

((y0 − b)2 + (yN − c)2) (6)

It is quite evident that the weights than minimize the objec-
tive function ε to approach zero, the approximate solution ŷ(t)
approaches the exact solution y(t) of the FD equation as given in
(1).

Learning methodologies

In this section, a brief introduction as well as parameter setting
used for training of weights of FDEN networks, have been presented
for SA, PS, GA and ASAs.
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