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a  b  s  t  r  a  c  t

The  complex  behaviour  of  fine-grained  materials  in  relation  with  structural  elements  has  received  notice-
able  attention  from  geotechnical  engineers  and designers  in recent  decades.  In this  research  work  an
evolutionary  approach  is presented  to create  a structured  polynomial  model  for  predicting  the  undrained
lateral  load  bearing  capacity  of piles.  The proposed  evolutionary  polynomial  regression  (EPR)  technique
is  an  evolutionary  data  mining  methodology  that  generates  a transparent  and  structured  representation
of  the  behaviour  of  a system  directly  from  raw  data.  It can operate  on  large quantities  of  data  in order
to  capture  nonlinear  and  complex  relationships  between  contributing  variables.  The  developed  model
allows  the  user  to gain a clear  insight  into  the  behaviour  of  the  system.  Field  measurement  data  from  liter-
ature was  used  to  develop  the  proposed  EPR  model.  Comparison  of  the  proposed  model  predictions  with
the  results  from  two  empirical  models  currently  being  implemented  in design  works,  a neural  network-
based  model  from  literature  and  also  the  field  data  shows  that  the  EPR  model  is capable  of  capturing,
predicting  and  generalizing  predictions  to  unseen  data  cases,  for lateral  load  bearing  capacity  of  piles
with  very  high  accuracy.  A sensitivity  analysis  was  conducted  to  evaluate  the  effect  of  individual  con-
tributing  parameters  and  their  contribution  to  the  predictions  made  by  the  proposed  model.  The merits
and  advantages  of  the  proposed  methodology  are  also  discussed.

© 2014  Published  by  Elsevier  B.V.

1. Introduction

Deep foundations are used as an effective way of avoiding lower quality soils
or transferring large loads to the soil lying underneath the structures. Analysis and
design of deep foundations under various loading conditions is widely investigated
by researchers in the past few decades. Some research contributions have revealed
that solving equations of static equilibrium can be an effective way  of designing
axially loaded piles, whereas, design of laterally loaded piles will only be possible
by  solving nonlinear differential equations. Poulos and Davis [1] implemented a
methodology based on elasticity, by adopting a previously developed soil model, to
analyze the behaviour of piles. However, their proposed approach was  not suitable
for the nonlinear analysis of behaviour of soil and pile systems. The analysis of
nonlinear soil behaviour has been conducted by Matlock and Reese [2] and Portugal
and Seco e Pinto [3]. Portugal and Seco e Pinto [3] also utilized the finite element
method for numerically predicting the behaviour of laterally loaded piles. This
methodology is widely used in analysis and design of deep foundations despite
the presence of uncertainties in such predictions due to the variability of soil
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properties. Semi-empirical methods were also suggested for analysis and design of
laterally loaded piles and for predicting their load bearing capacity (e.g. [4]).

In  recent years, artificial neural network (ANN) models have been proposed
as  alternates to experimental and empirical approaches [5–7]. Goh [8] used a back
propagation neural network (BPNN) to predict the skin friction of piles in clayey soils.
Goh [9,10] showed that artificial neural network models outperform some of the
existing empirical models in predicting the ultimate load bearing capacity of timber
piles  in clay and pre-cast concrete and also steel piles in cohesionless soils. Chan et al.
[11] and Teh et al. [12] argues that artificial neural networks have been successful
in predicting the static load bearing capacity of piles and their predations are in
agreement with the outcomes of analyses conducted using commercial software
CAPWAP [13]. Lee and Lee [14] utilized neural networks to predict the ultimate
bearing capacity of piles based on data simulated using previously suggested models
and  also in situ pile loading test results. Abu-Kiefa [15] used a probabilistic neural
network model, generalized regression neural network (GRNN), to predict the pile
load bearing capacity considering the contributions of the tip and shaft separately
and also the total load bearing capacity of piles driven into cohesionless soils. Nawari
et  al. [16] used neural networks for predicting the axial load bearing capacity of steel
piles (including the ones with H cross sectional shape) and also pre-stressed and
reinforced concrete piles using both back propagation and generalized regression
neural networks. The same authors also predicted the settlement of the top of the
drill shaft due to lateral loading of piles with similar methodology based on data
from  in situ tests.

Artificial neural networks have mostly been used to predict the vertical load
bearing capacity of piles and their performance is usually measured based on the
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coefficient of correlation (R). Coefficient of correlation is commonly used amongst
researchers; however, it is difficult to judge, based on this method, whether the
developed model is over-predicting or under-predicting the actual values. As a
result, Briaud and Tucker [17] have strongly emphasized that other statistical criteria
should also be implemented along with the coefficient of correlation to evaluate the
quality of the predictions of the ANN models created for pile load bearing capacity. To
address this issue, Abu-Farsakh [18] used statistical parameters, mean and standard
deviation, calculated for the ratio of predicted pile capacity (Qp) over the measured
pile  capacity (Qm) to evaluate the quality of the predictions of the model. Das and
Basudhar [19] also suggested an artificial neural network model for predicting lat-
eral load capacity of piles and used similar procedures suggested by Abu-Farsakh
[18] to evaluate their presented model.

The results of previous works have shown that artificial neural network offers
great capabilities and advantages in modelling the behaviour of materials and sys-
tems. However, it is generally accepted that ANNs also suffer from a number of
shortcomings. One of the main shortcomings of the neural network based approach
is  that the optimum structure of the neural network (e.g. the number of input layers,
hidden layers and transfer functions) needs to be identified a priori through a time
consuming trial and error procedure. Another main drawback of the neural network
approach is the large complexity of the structure of ANN. This is because the neural
network stores and represents the knowledge in the form of weights and biases
which are not easily accessible to the user. Artificial neural networks are consid-
ered as black-box systems as they are unable to explain the underlying principles
of prediction and the effect of inputs on the output [20].

A number of investigators have studied the use of connection weights to
interpret the contributions of input variables to neural network models [21–23].
However, interpretation of weights may  still be considered a subject of further
research in the future.

In this paper an evolutionary-based data mining approach is proposed to model
the  bearing capacity of laterally loaded piles in undrained conditions. The evolu-
tionary polynomial regression has been successfully applied to modelling a number
of  civil engineering materials and systems including torsional strength prediction
for reinforced concrete beams [24], stress–strain and volume change behaviour of
unsaturated soils [25], stability of soil and rock slopes [26], mechanical behaviour of
rubber concrete [27] and permeability and compaction characteristics of soil [28].
EPR  provides a structured and transparent representation of the model in the form
of  mathematical (polynomial) expressions to describe the complicated behaviour of
systems. The proposed methodology overcomes most of the issues and drawbacks
associated with the neural network modelling approach by providing clear insight
into the behaviour of the system and the levels of contribution of the influencing
parameters in the developed models.

2. Database

Field measurement data from literature is used to develop and
evaluate the proposed EPR model. From among 38 data cases [29],
29 cases, representing 80% of the total data, were used to train the
EPR model and the remaining cases were kept unseen to EPR during
the model development process and were used in the model eval-
uation stage to examine generalization capabilities of the created
model.

Tables 1 and 2 represent the training and testing data sets used
in EPR model development and validation stages respectively. The

Table 1
Field measurement data for lateral load capacity of piles and contributing parameters (training data set).

Diameter, D (mm)  Embedded
length, L (mm)

Eccentricity, e
(mm)

Undrained shear
strength, Su (kN/m2)

Lateral load bearing
capacity, Qm (N)

6.35 146.1 19.1 38.8 69.5
13  260 0 24 225
12.5  130 0 24 106
13.5  300 50 3.4 30
13.5  300 50 4 36
13.5  300 50 5.5 50
13.5  300 50 7.2 64
18  300 50 10 89
18  300 50 3.4 3
20.4  300 50 4 46
12.3  300 50 5.5 44
18.4  300 50 4 51
18  300 50 10 116.5
33.3  300 50 3.4 78.5
33.3  300 50 5.5 110.5
12.3  300 50 3.4 29.5
6.35  139.7 25.4 38.8 65.5
12.3  300 50 7.2 58
12.3  300 50 10 81
18.4  300 50 5.5 65.5
18.4  300 50 7.2 86.5
18.4  300 50 10 114
20.4  300 50 5.5 59.5
20.4  300 50 7.2 76.5
20.4  300 50 10 87
25.4  300 50 7.2 90
25.4  300 50 10 151.6
25.4  300 50 3.4 50
25.4  300 50 5.5 75

Table 2
Field measurement data for lateral load capacity of piles and contributing parameters (validation data set).

Diameter, D (mm)  Embedded
length, L (mm)

Eccentricity, e
(mm)

Undrained shear
strength, Su (kN/m2)

Lateral load bearing
capacity, Qm (N)

13.5 190 0 24 128
20.4  300 50 3.4 38
18.4  300 50 3.4 42.5
25.4  300 50 4 58
13  132 33.8 38.8 53
18  300 50 4 49
18  300 50 5.5 65
18  300 50 7.2 87
12.3  300 50 4 35
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