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a  b  s  t  r  a  c  t

In  this  paper  a new nature-inspired  metaheuristic  algorithm  is proposed  to  solve  the  optimal  power  flow
problem  in  a power  system.  This  algorithm  is inspired  by the  black  hole  phenomenon.  A black  hole  is a
region  of  space-time  whose  gravitational  field  is  so  strong  that nothing  which  enters  it,  not  even  light,
can  escape.  The  developed  approach  is called  black-hole-based  optimization  approach.  In  order  to  show
the effectiveness  of the  proposed  approach,  it  has  been  demonstrated  on  the  standard  IEEE  30-bus  test
system  for different  objectives.  Furthermore,  in  order  to demonstrate  the scalability  and  suitability  of  the
proposed  approach  for large-scale  and real power  systems,  it has  been  tested  on the  real  Algerian  59-bus
power  system  network.  The  results  obtained  are  compared  with  those  of  other  methods  reported  in the
literature.  Considering  the  simplicity  of  the  proposed  approach  and  the  quality  of  the  obtained  results,
this  approach  seems  to be  a promising  alternative  for solving  optimal  power  flow  problems.
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1. Introduction

Since it has been introduced by Dommel and Tinney in the early
1960s, the concept of Optimal Power Flow (OPF) has received an
immense attention [1,2]. The OPF can be defined as a nonlinear
optimization problem, where a specific objective function has to
be optimized while satisfying operational and physical constraints
of the electric power system [3].

A large variety of optimization techniques have been employed
to solve OPF problems. Earlier, many traditional (deterministic)
optimization techniques have been successfully used, the most
popular were: gradient based methods, Newton-based method,
the simplex method, sequential linear programming, sequential
quadratic programming, and interior point methods. A survey of the
most commonly used traditional optimization algorithms applied
to solve the OPF problem is given in [4,5]. Although, some of these
deterministic techniques have excellent convergence characteris-
tics and many of them are widely used in the industry however, they
suffer from some shortcomings. Some of their drawbacks are: they
cannot guarantee global optimality i.e. they may  converge to local
optima, they cannot readily handle binary or integer variables and
finally they are developed with some theoretical assumptions, such
as convexity, differentiability, and continuity, among other things,
which may  not be suitable for the actual OPF conditions [5,6].

In additions to the abovementioned drawbacks, there was  a
rapid development of recent computational intelligence tools such
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as genetic algorithm, ant colony algorithm, artificial immune algo-
rithm, particle swarm optimization algorithm, harmony search
algorithm, differential evolution algorithm, cuckoo search algo-
rithm, which have been widely used in many applications instead of
the conventional techniques like in [7–12]. Moreover, hybrid evolu-
tionary optimization algorithms have received significant interest
for fast convergence and robustness in finding the global minimum
at the same time as illustrated and demonstrated in [13–21]. Hence,
all these new developments, have motivated significant research in
the area of non-deterministic that is, metaheuristic, optimization
methods to solve the OPF problem in the past two decades [6].
These methods are known for: their capabilities of finding global
solutions and avoid to be trapped with local ones, their ability of
fast search of large solution spaces and their ability to account for
uncertainty in some parts of the power system. A review of many
optimization techniques applied to solve the OPF problem is given
in [6,22].

However, it is noteworthy to mention that, most of the exist-
ing metaheuristics are dependent of some internal parameters. For
example, the performance of the PSO technique depends on the
inertia weight and the acceleration factors that have to be selected
carefully. Hence, many simulations have to be done in order to
select these internal parameters. In the OPF problem, simulations
are time costly and any changes in the configuration of the net-
work or in its characteristics, like the load for instance, require a
new tuning of the internal parameters.

The main contribution of this paper is to apply a new meta-
heuristic approach based on the black hole phenomenon to solve
the OPF problem. The basic idea of a black hole is simply a region of
space that has so much mass concentrated in it that there is no way
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for a nearby object to escape its gravitational pull. In other words,
anything falling into a black hole, including light, is forever gone
from our universe. Its advantage over other well-known optimiza-
tion algorithms is simplicity and it is a parameter-less optimization
algorithm (i.e. it has no internal parameter to tune).

This paper is organized as follows. After this first section which
is the introduction, the second section focuses on the formulation
of the OPF problem. The third section of this paper presents the
concept and main steps of the developed BHBO approach. Next,
we apply the BHBO approach to solve the OPF problem in order
to optimize the power system operating conditions. Finally, the
conclusions are drawn in the fifth section.

2. Optimal power flow formulation

As aforesaid, OPF is a power flow problem which gives the opti-
mal  settings of the control variables for a given settings of load
by minimizing a predefined objective function such as the cost of
active power generation or transmission losses. The majority of
OPF formulations may  be represented using the following standard
form [5]:

Minimize J(x, u) (1)

Subject to g(x, u) = 0 (2)

and h(x, u) ≤ 0 (3)

where u represents the vector of independent variables or control
variables. x represents the vector of dependent variables or state
variables. J(x,u) represents the system’s optimization goal or the
objective function. g(x,u) represents the set of equality constraints.
h(x,u) represents the set of inequality constraints.

The control variables u and the state variables x of the OPF
problem are stated in (4) and (5), respectively.

2.1. Control variables

These are the set of variables which can be modified to satisfy the
load flow equations. The set of control variables in the OPF problem
formulation are:

- PG: represents the active power generation at the PV buses except
at the slack bus.

- VG: represents the voltage magnitude at PV buses.
- T: represents the tap settings of transformer.
- QC: represents the shunt VAR compensation.

Hence, u can be expressed as:

uT = [PG2 · · ·PGNG , VG1 · · ·VGNG , QC1 · · ·QCNC , T1· · ·TNT] (4)

where NG, NT and NC are the number of generators, the number
of regulating transformers and the number of VAR compensators,
respectively.

2.2. State variables

All OPF formulations require variables to represent the electrical
state of the system [5]. Most often, the state variables for the OPF
problem formulation are:

- PG1: represents the active power output at slack bus.
- VL: represents the voltage magnitude at PQ buses; load buses.
- QG: represents the reactive power output of all generator units.
- Sl: represents the transmission line loading (or line flow).

Hence, x can be expressed as:

xT = [PG1 , VL1 · · ·VLNL , QG1 · · ·QGNG , Sl1 · · ·Slnl
] (5)

where NL, and nl are the number of load buses, and the number of
transmission lines, respectively.

2.3. Constraints

OPF constraints can be classified into equality and inequality
constraints, which are detailed in the following sections.

2.3.1. Equality constraints
The equality constraints of the OPF reflect the physics of the

power system. These equality constraints are as follows.

2.3.1.1. Real power constraints.

PGi − PDi − Vi

NB∑
j=i

Vj[Gij cos(�ij) + Bij sin(�ij)] = 0 (6)

2.3.1.2. Reactive power constraints.

QGi − QDi − Vi

NB∑
j=i

Vj[Gij sin(�ij) + Bij cos(�ij)] = 0 (7)

where �ij = �i − �j, NB is the number of buses, PG is the active power
generation, QG is the reactive power generation, PD is the active
load demand, QD is the reactive load demand, Gij and Bij are the
elements of the admittance matrix (Yij = Gij + jBij) representing the
conductance and susceptance between bus i and bus j, respectively.

2.3.2. Inequality constraints
The inequality constraints of the OPF reflect the limits on physi-

cal devices present in the power system as well as the limits created
to guarantee system security. These inequality constraints are as
follows.

2.3.2.1. Generator constraints. For all generators including the
slack: voltage, active and reactive outputs ought to be restricted
by their lower and upper limits as follows:

Vmin
Gi

≤ VGi
≤ Vmax

Gi
, i = 1, . . .,  NG (8)

Pmin
Gi

≤ PGi
≤ Pmax

Gi
, i = 1, . . .,  NG (9)

Q min
Gi

≤ QGi
≤ Q max

Gi
, i = 1, . . .,  NG (10)

2.3.2.2. Transformer constraints. Transformer tap settings ought to
be restricted within their specified lower and upper limits as fol-
lows:

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, . . .,  NT (11)

2.3.2.3. Shunt VAR compensator constraints. Shunt VAR compen-
sators must be restricted by their lower and upper limits as follows:

Q min
Ci

≤ QGCi
≤ Q max

Ci
, i = 1, . . .,  NG (12)

2.3.2.4. Security constraints. These contain the constraints of volt-
age magnitude at load buses and transmission line loadings. Voltage
of each load bus must be restricted within its lower and upper oper-
ating limits. Line flow through each transmission line ought to be
restricted by its capacity limits. These constraints can be mathe-
matically formulated as follows:

Vmin
Li

≤ VLi
≤ Vmax

Li
, i = 1, . . .,  NL (13)
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