
Applied Soft Computing 24 (2014) 1095–1104

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Monitoring applications: An immune inspired algorithm
for software-fault detection

Rui Ligeiroa,b

a INOV INESC – Instituto de Novas Tecnologias, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
b CMAF – Instituto Investigaç ão Interdisciplinar, Univ. Lisboa, Av. Gama Pinto 2, 1649-003 Lisboa, Portugal

a r t i c l e i n f o

Article history:
Received 24 February 2013
Received in revised form 11 May 2014
Accepted 11 August 2014
Available online 1 September 2014

Keywords:
Artificial immune system
Fault detection
Fault injection
Reinforcement learning
Monitoring
Metrics

a b s t r a c t

Large-scale software systems are in general difficult to manage and monitor. In many cases, these systems
display unexpected behavior, especially after being updated or when changes occur in their environment
(operating system upgrades or hardware migrations, to name a few). Therefore, to handle a chang-
ing environment, it is desirable to base fault detection and performance monitoring on self-adaptive
techniques.

Several studies have been carried out in the past which, inspired on the immune system, aim at solving
complex technological problems. Among them, anomaly detection, pattern recognition, system security
and data mining are problems that have been addressed in this framework.

There are similarities between the software fault detection problem and the identification of the
pathogens that are found in natural immune systems. Being inspired by vaccination and negative and
clonal selection observed in these systems, we developed an effective self-adaptive model to monitor
software applications analyzing the metrics of system resources.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Large-scale software systems are difficult to manage and monitor. These systems
may display unexpected behavior, especially after being updated or when changes
occur in their environment (operating system upgrades or hardware migrations, to
name a few). Novel situations require robust defensive mechanisms, but monitor-
ing can be rather time-consuming, requiring many efforts and tools [1–6] for the
purpose.

A failure or malfunction occurs when the system behavior deviates from its ini-
tial specification, this being usually associated to the detection of a system error. In
case of a failure in an application component, it must be detected quickly and, prefer-
ably, the overall system should be kept working, even with limitations. CPU usage,
memory usage, load average and thread count are, among others, useful resource
indicators of the efficiency and performance of a system. These metrics are highly
correlated with the characteristics of the host where the software applications exe-
cute and, in general, when something wrong happens, some of the metrics reach
values outside their usual ranges. Thus, the creation of an adaptive monitoring mech-
anism that ensures system fault detections based on resource metrics is a natural
choice.

Despite all recent biological findings, lots of uncertainty still exists regarding
how Nature works. However, in these last decades, biological systems have been
used as a source of inspiration to solve complex technological problems, going far
beyond the earlier boundaries of computer science. For example, analogies between
the defending mechanisms of the immune system and anomaly detection in com-
puter systems have been largely studied since 1994, after publications by Forrest
et al. [8] and Kephart [9]. As a matter of fact, the vertebrate immune system has
been the object of study by several authors [11–18], and as here, we give especial

E-mail addresses: rui.ligeiro@inov.pt, rmligeiro@fc.ul.pt, rui.ligeiro@gmail.com

relevance to the insights most pertinent to the monitoring model, particularly the
self/non-self discrimination, vaccination and some specific aspects of the adaptive
immune response. The vertebrate immune system it is a complex system composed
of a large collection of cells with several defense mechanisms that protect the body
against diseases by recognizing, attacking and destroying pathogens. The system is
divided into two inter-related branches: the innate immune system and the adap-
tive immune system. Roughly speaking, the innate immune system acts very quickly
to the first signs of infection, being crucial to the initial inflammatory response
by recognizing and signaling the adaptive immune response, whereas the adap-
tive immune system has the ability to change, improving the immune response
during the lifetime of the organism. Note that the learning, memory and adap-
tation capabilities of the adaptive immune system emerge without any central
control.

Lymphocytes, a special type of white blood cell with the function to recognize
“non-self” antigens, are the most important agents of the adaptive immune system.
B-cells and T-cells are the two main types of lymphocytes that together recognize
and kill antigens. While B-cells produce and release large amounts of antibodies that
attack pathogens, T-cells orchestrate the response of other cells as well as directly
induce the death of cells that show signs of having been invaded by pathogens.
The lymphocytes surface is covered with receptors that identify antigens by partial
matching its shape. Consider, for instance, receptors and antigens as two pieces of
LEGO, that even if they don’t exactly join together, there are some complementary
parts between each other. Affinity is the term used for the degree of recognition
of antigens by lymphocyte receptors – stronger recognition corresponds to higher
affinity and vice versa.

T-cells mature in the thymus gland, an organ located in the upper region of
the chest to which T-cells travel after being created by the bone marrow in imma-
ture form. In this organ a process takes place called negative selection, responsible
for eliminating T-cells capable of attacking the body’s own cells. Nevertheless, this
discrimination (self/non-self) can fail, resulting in the development of autoimmune
diseases.

http://dx.doi.org/10.1016/j.asoc.2014.08.021
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.08.021
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.08.021&domain=pdf
mailto:rui.ligeiro@inov.pt
mailto:rmligeiro@fc.ul.pt
mailto:rui.ligeiro@gmail.com
dx.doi.org/10.1016/j.asoc.2014.08.021

1096 R. Ligeiro / Applied Soft Computing 24 (2014) 1095–1104

The reproduction of lymphocytes is based in a principle known as clonal selection.
Once activated, B-cells produce and segregate antibodies, proliferating in a quantity
proportional to the degree of affinity with the antigen. B-cells are also stimulated by
T-cells (T-helper cells) to divide into offspring cells, which are very similar to their
parent. This preferential proliferation of the most capable cells has clear similarities
with Darwin’s evolution principle. The immune system maintains a population of
long-lived memory cells after clearance of infection and recruits newly generated B-
cells into the memory. Immune memory enables the immune system to act quickly
and efficiently in protecting the body in case it is infected by similar pathogens
in the future. Vaccination follows the same principle. Summarizing, the essential
features of the natural immune systems are distributed detection, self-organization,
multi-layer structure, diversity, autonomy, imperfect detection, learning, memory
and adaptability.

Several immune inspired algorithms have been developed and a relatively new
research field, called Artificial Immune Systems (AIS), arose as a new computing
paradigm. Nevertheless, AIS has not been used so far, to our knowledge, as a tool to
monitor concrete software applications using resource usage metrics. Our model,
for monitoring software applications, is based on metrics of the system resources
and inspired in the natural mechanisms of the immune system, briefly discussed
above.

There are similarities between the software fault detection problem and the
identification of pathogens in natural immune systems. It should be mentioned that
the natural immune system is merely used as a metaphor for anomaly detection and
we are not trying to imitate all its features and detailed operation. Our inspiration
comes mostly from the following three features:

1.1. Self/non-self discrimination

A healthy immune system is able to differentiate between the cells of its organ-
ism, know as self, and the foreign elements (antigens) that attack the organism,
know as non-self. In the same way, an anomaly points toward a deviant behavior in
relation to what is expected and characteristic of the system. Thus, inspired by the
vertebrate adaptive immunity response, an algorithm is developed to distinguish
common behavior of the host (self) from faults (non-self) in software applications.

1.2. Vaccination

The reason why we do not acquire some diseases more than once is because
the immune system remembers pathogens. Vaccination is a good evidence that the
immune system has memory. It consists in introducing into an organism some harm-
less organisms, which provoke an immune response against the foreign elements. As
a consequence, immunological memory is induced which enables the immune sys-
tem to act quickly and efficiently in protecting the body when it is actually infected
by the real pathogens at some future time. Having this in mind, a kind of fault injec-
tion learning mechanism was created, as a part of the monitoring model. A fault
injection is an application of an artificial malfunction, inserted into a particular
monitored system with the purpose of simulating a specific error. Note that the
monitored system is not actually affected by the fault. This process occurs in the
interface between the monitoring model and the monitored application. It consists
in intercepting metrics collected from the monitoring model into the monitored
application and changing their values to outside the normal range.

1.3. Adaptive immune response

The adaptive immune system is composed of a large collection of cells with no
central control, which together have the ability to improve the immune response
during the lifetime of the host. The system evolves based on the principles of muta-
tion and selection, producing a number of lymphocytes proportional to the degree of
binding (affinity) with the antigen. As stated above, in software systems, unexpected
behavior requires robust adaptive defensive mechanisms capable of recognizing
new faults. As proposed by de Castro and Von Zuben [10], one is here inspired by
the clonal selection concept, together with the affinity maturation process of the
immune response, to create an adaptive monitoring mechanism.

In this paper we show that not only the model performs well in detecting faults,
but also fault injection and reinforcement learning substantially decrease the detec-
tion of false positives. The article begins by reviewing the most important aspects
of software-fault monitoring, describes the faults that are simulated as well as the
identification of all the metrics that are collected in the monitored system. In Section
3, we present a computational algorithm that, in addition to detecting anomalies,
also identifies its type. After that, the results and discussion of the simulation are
presented as well as the most relevant conclusions.

2. Preliminary knowledge

We advocate the use of monitoring as a major design prin-
ciple to increase safety, reliability and dependability of software
applications. Many tools have been proposed for runtime moni-
toring with the purpose of detecting, diagnosing and recovering

from software faults. Nelly Delgado and colleagues described the
taxonomy of software-fault monitoring systems and presented a
state-of-the-art of the tools used to detect faults (for details, see [6]
and references therein). Note that none of the tools referred in their
study are based on metrics of the system resources together with
immune system inspiration to distinguish the common behavior of
the host (self) from faults (non-self).

In 1994 Forrest et al. applied to the problem of computer viruses
(see [8] for details), is of paramount importance for the scientific
community, because it unifies a wide variety of computational
situations by treating them as the problem of distinguishing self
from non-self. Later on, enhancements were made to the original
version of the Negative Selection algorithm proposed by Forrest
et al. ([20–23], to name a few), but the main features remained
unchanged. Another valuable application of AIS-based algorithms
for fault prediction is the study by Catal and Diri [35]. The authors
analyzed the performance of several existing classifiers using a
different kind of metrics: software metrics (method-level and class-
level; see [7] for details on software fault prediction metrics). When
compared to others, AIS algorithms present remarkable results in
predicting faults, however no experimentation are presented in
detecting faults in real time, like we do here. Two other relevant
methods address the fault detection problem using AIS combined
with other technics. One is an approach based on conventional
fuzzy soft clustering and AIS for multiple sensor data fusion and
fault detection [36], the other is a multi-objective AIS to optimize
parameters of a Support Vector Machine (SVM) applied to fault
diagnosis of induction motors and anomaly detection problems
[37]. Our model mimics a system that has features very close to
a real system in contrast to the mentioned works that although
showing good results, seem to be not sufficiently mature to face
the requirements and complex behavior of practical applications.

To the best of the author’s knowledge, the only work presenting
an evolutionary technique that also invokes a set of resource usage
metrics for software faults detection is that by Wong et al. [24]. Due
to this similarity, their approach will be discussed in more detail in
the Section 4.

In general terms, despite of all the important studies carried
out in software monitoring, we did not find one that detects faults
using metrics together with artificial immune adaptation technics.
Furthermore, most of them are based in disparate approaches and
methodologies as the existence of an oracle, i.e., determining if
the systems behavior under test is or not acceptable, or concern
whether the design or implementation of the system meets the
requirements (or specifications) or the instrumentation of a pro-
gram code.

The main goal of runtime software-fault monitoring is to
observe the software behavior in order to determine whether it
complies with its intended purpose, in other words, to determine if
it is consistent with a given specification [19]. Avizienis and Laprie
[25] gave widely accepted definitions of systems fault, error and
failure. In summary, a system failure occurs when the delivered
service deviates from the required service because the system was
erroneous: an error is that part of the system state that is liable
to lead to a fault in the system. A fault is active when it causes an
error and results in an incorrect state that may or may not lead to
a failure. Some faults are, deliberately or not caused by humans,
whereas others are trigged by natural phenomena without human
participation. Both may cause a huge impact, affecting partially or
even completely the integrity of the whole system.

Here, we do not need to treat differently faults, errors or fail-
ures. We simply use the term fault, considered as a malfunction that
affects the proper functioning or full availability of a system, leading
some particular resource metrics to reach values outside their usual
ranges. Three faults were simulated to evaluate the performance of
our model (which was developed in Java):

Download	English	Version:

https://daneshyari.com/en/article/6905843

Download	Persian	Version:

https://daneshyari.com/article/6905843

Daneshyari.com

https://daneshyari.com/en/article/6905843
https://daneshyari.com/article/6905843
https://daneshyari.com/

