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a  b  s  t  r  a  c  t

SVM  (support  vector  machines)  techniques  have  recently  arrived  to complete  the wide  range  of  classi-
fication  methods  for  complex  systems.  These  classification  systems  offer similar  performances  to other
classifiers  (such  as  the  neuronal  networks  or  classic  statistical  classifiers)  and  they  are  becoming  a  valu-
able  tool  in  industry  for  the  resolution  of real  problems.  One  of  the  fundamental  elements  of  this  type
of  classifier  is  the  metric  used  for determining  the distance  between  samples  of  the  population  to be
classified.  Although  the  Euclidean  distance  measure  is  the  most  natural  metric  for  solving  problems,
it  presents  certain  disadvantages  when  trying  to  develop  classification  systems  that  can  be adapted  as
the  characteristics  of  the  sample  space  change.  Our  study  proposes  a means  of  avoiding  this  problem
using  the  multivariate  normalization  of  the  inputs  (both  during  the  training  and  classification  processes).
Using  experimental  results  produced  from  a significant  number  of populations,  the  study  confirms  the
improvement  achieved  in  the  classification  processes.  Lastly,  the study  demonstrates  that  the  multivariate
normalization  applied  to a real  SVM is  equivalent  to the  use of  a  SVM  that  uses  the  Mahalanobis  distance
measure,  for  non-normalized  data.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Support vector machines

SVMs have rapidly become tools for general use in the field of
pattern recognition. The simplest application of this technique is
the problem of binary classification (where only two classes are
defined). The underlying idea [1] is to find a hypothesis H that
minimizes the probability of empirical error (the probability that
H contains an error in a test set selected at random). In Ref. [2], it
is demonstrated that minimizing the empirical error is equivalent
to finding the hyperplane (Figs. 1 and 2) that lies at the maximum
distance from the closest training samples for the two  classes.

1.2. Mathematical basis

Let there be n samples, independent and identically distributes,
taken from an unknown probability distribution P(x, y), consisting
of pairs conformed by a vector xi ∈ Rn, i.e

xT
i = (xi1, xi2, . . .,  xin)1×n

and a class label (x1, y1), (x2, y2), . . .,  (xl, yl).
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We wish to construct a SVM that knows how to relate the val-
ues of the vectors xi with the corresponding values of the labels yi,
by means of a decision y : Rn −→ {−1, 1}, which lies between two
hyperplanes that define a margin of maximum size.

1.2.1. The linearly separable case
The simplest case [3], is where the data can be classified by a

separating hyperplane, with the equation

ωT · x + b = 0 (1)

where ω is a vector normal to the hyperplane, called the weight
vector, given by

ωT = (ω1, ω2, . . .,  ωn)1×n

and b is known as the bias.
This hyperplane must be optimum, and so the values of ω and b

must fulfil

min
(ω,b)

1
2

‖ω‖2 = min
(ω,b)

1
2

ωT · ω (2)

subject to the restrictions

−yi(ω
T · xi + b) + 1 ≤ 0 fori = 1, 2, . . .,  l (3)

The solution to this optimization problem [4] is found at the
saddle point of the Lagrangian function. In order to find this, we
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Fig. 1. Possible separating hyperplanes.

Fig. 2. Optimum separating hyperplane.

must minimize the Lagrangian with respect to ω and b, at the same
time maximizing it with respect to ˛i.

In this way, the optimum weight vector and the optimum bias
will be defined by

ω∗ =
l∑

i=1

˛∗
i · xi · yi (4)

b∗ = 1
k

[
k∑

s=1

(ys − (ω∗)T · xs)

]
(5)

where k is the number of support vectors (with ˛∗
i

> 0 with i = 1, 2,
. . .,  l are the Lagrange multipliers).

1.2.2. The non-linear case
As expressed in Ref. [5], in the majority of cases it is not possible

to separate using a linear frontier in the space dimension of the
data. In this case, the SVM can project the vector of input data into
non-linear regions, by means of mapping these points xi. Using a
suitable non-linear projection, it will be possible to separate the
support vectors in that hyperspace.

To do this, we need to take the points and, using the function
ϕ : Rn −→ Rm, project them into the feature space Rm. In this way,
if we obtain an optimum separation hyperplane in the space Rm,
we can state that a region of non-linear separation also exists in Rn.

According to Ref. [5], the principal problem of this projection,
known as the curse of dimensionality,  is the potential increase in
computation time. For this reason, a symmetrical function is used,

known as a kernel [6], calculated from the points in the input space
as K(u, v) = ϕ(u) · ϕ(v), which enables the operations to be executed
in the input space. Thus, the scalar product does not necessarily
need to be evaluated in the feature space (provided the kernels
comply with the Mercer Conditions [7]).

The region of non-linear separation can be found as the solution
to the linear problem, but with ϕ(xi) instead of xi

min
(ϕ(ω),b)

1
2

‖ϕ(ω)‖2 = min
(ϕ(ω),b)

1
2

ϕ(ω)T · ϕ(ω) (6)

and subject to the restrictions

−yi(ϕ(ω)T ϕ(xi) + b) + 1 ≤ 0 for ˛i ≥ 0, i = 1, 2, . . .,  l (7)

The optimum solution, as in the linear case, is found at the
Lagrangian saddle point, and so the Lagrangian must be minimized
with respect to ϕ(ω) and b, at the same time as maximizing it with
respect to ˛i.

So, the optimum bias is obtained as follows

b∗ = 1
k

[
k∑

s=1

(
ys −

l∑
i=1

˛i · yi · k(xT
s · xi)

)]
(8)

where k is the number of support vectors.
The classification is made using the same function as in the lin-

early separable case, but in this case, it is not possible to explicitly
calculate the weight vector (for which we would need to know ϕ).
Therefore, we  employ the following expression [8]:

u(x) =
n∑

i=1

˛i · yi · k(xT
i · x) + b∗ (9)

1.3. Data normalization to improve the generalization
performance with SVM

The normalization of the input data of the SVM is an option that
is increasingly used in the classification process of SVMs. There are
many articles dealing with this, suggesting a wide combination of
proposals. Among the numerous proporsals for normalization we
have reviewed in the literature, we can cite [9–12] to improve the
accuracy or [13] to improve the speed up of the learning phase.

We have studied some of these normalizations [14,9] of which
we can highlight those proposed by Ref. [11]. These are the
Min–Max Normalization and the Zero-Mean Normalization.

1.3.1. Min–Max normalization
The formulation of the Min–Max normalization is:

D′(i) = D(i) − min(D)
max(D) − min(D)

· (U − L) + L (10)

where D′ is the normalized data matrix, D is the natural data matrix
and U and L are the upper and lower normalization bounds.

This type of normalization method is used to normalize a data
matrix into a desired bound. The most popular bound is between 0
and 1. We  also change bound values to between 0 and −1 or 1 and
−1.

1.3.2. Zero-Mean normalization
The formulation of the Zero-Mean normalization is as follows:

D′ = D − D

�
(11)

where D is the mean of the data matrix D and � is the standard
deviation of the same data matrix. In this normalization method,
the mean of the normalized data points is reduced to zero. As a
result, the mean and standard deviation of the natural data matrix
are required.
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