
Astronomy and Computing 24 (2018) 45–51

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

KERN
G. Molenaar *, O. Smirnov
SKA South Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405, South Africa
Department of Physics & Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa

a r t i c l e i n f o

Article history:
Received 22 June 2017
Accepted 26 March 2018
Available online 15 June 2018

Keywords:
Software
Packaging
Radio astronomy
Reproducible science
Containerisation

a b s t r a c t

KERN is a bi-annually released set of radio astronomical software packages. It should contain most of the
standard tools that a radio astronomer needs to work with radio telescope data. The goal of KERN is to
save time and prevent frustration in setting up of scientific pipelines, and to assist in achieving scientific
reproducibility.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The installation of scientific software for use in astronomy can
be notoriously challenging. The radio astronomy community has a
limited number of dedicated software engineers and often lacks
the human resources to dedicate to industrial-quality software
development and maintenance. It is not uncommon that poorly
written and badly maintained software packages of high complex-
ity are used by scientists around the world, as these provide some
set of algorithmic features not available elsewhere.

KERN has been created to facilitate scientists and system ad-
ministrators. KERN is the name of the project to structure and au-
tomate the packaging of scientific software. Themain deliverable is
the KERN suite, a bi-annually released set of 3rd party open source
scientific software packages.

The primary goals of KERN are as follows: to make it easier
to install the scientific software, to supply a consistent working
environment to a scientist and to improve interoperability and
interchangeability.

Due to human resource limitations, we target KERN to one
operating system and distribution. This is unfortunate, but recent
development and adaptation of containerisation technology make
it easier to deploy packaged software on most platforms. Limiting
us to only one platform enables us to focus on performing the
packaging only once, and to do this well. The choice of this one
platform is then based on install base (desktop, server) and ease of
use for user and developer (package creator).

The intended audience of this paper is threefold:

* Corresponding author at: Department of Physics & Electronics, Rhodes Univer-
sity, PO Box 94, Grahamstown, 6140, South Africa.

E-mail address: gijs@pythonic.nl (G. Molenaar).

• the user, who is interested in using the software bundled
with KERN,

• the developer, who wants his radio astronomy software
available to a wider range of users and

• the system administrator who is setting up systems in-
tended to be used for radio astronomical data reduction.

The name KERN means ‘core’ in Dutch and Afrikaans.

2. The target platform

A quick look around various astronomy institutes and universi-
ties shows that GNU/Linux and OS X are the most used personal
computing platforms. On the server side it is without question
GNU/Linux. Compared to OS X, GNU/Linux is an open source and
a freely available platform, which is also a clear advantage. These
facts combined result in the choice for Linux as the KERN platform.

However, further consideration was required before selec-
tion of the most suitable platform. There are various flavours of
GNU/Linux, with different design philosophies and varying pack-
aging formats. The most popular distributions can be split into
two groups, RPM (Red Hat Package Manager) package and Debian
package based distributions. There is no major advantage or dis-
advantage to either package format. Although there are diverse
local trends, it is our experience that in the South African radio as-
tronomy community, the majority of frequently utilised platforms
are Debian based, specifically Ubuntu LTS. This distribution also
appears to have popularity worldwide. Therefore, it was the most
logical choice as KERNs target platform.

https://doi.org/10.1016/j.ascom.2018.03.004
2213-1337/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ascom.2018.03.004
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2018.03.004&domain=pdf
mailto:gijs@pythonic.nl
https://doi.org/10.1016/j.ascom.2018.03.004


46 G. Molenaar, O. Smirnov / Astronomy and Computing 24 (2018) 45–51

3. Other packaging methods

In this section we discuss other packaging systems available to
us, and motivate our choice not to use these.

3.1. Anaconda

A packaging effort named Anaconda is currently gaining popu-
larity. Anaconda is a cross platform set of scientific software, with
a focus on Python. It supports GNU/Linux, Windows and OS X. OS
X is also often used as a desktop environment in radio astronomy.
Supporting OS X would be advantageous for many end users.

We have performed experiments with packaging packages for
Anaconda. Users have reported that Anaconda is easy to oper-
ate; however, at the time of writing, the packaging procedure is
cumbersome for the developer. In effect, developers cannot gen-
erate the same high quality, seamlessly installable packages, as
is achievable with native Linux packaging methods. Additionally,
Anaconda lacks an equivalent to Debians Lintian, a packaging tool
that dissects a Debian package and tries to find bugs and violations
of the Debian policies.

Various software packages in KERN are not created with OS
X support in mind thus requiring various modifications to the
source code. Also, compilation procedures can vary greatly across
platforms, doubling the packaging and maintenance effort if we
would support OS X as a platform.

In addition, Linux distributions come with a large set of
prepackaged software,which eliminates the need to packagemany
dependencies. Using Anaconda would necessitate packaging up
many dependencies ourselves.

The limitations of Anaconda led to the preference of Debian-
over Anaconda packages.

3.2. Python and pip

The Python programming language has become the most
widely used language in astronomy (Momcheva and Tollerud,
2015). Python comeswith a packagemanager called pip. Pip assists
in downloading and installing Python packages from the Python
package index (PyPi). Another useful tool for setting up Python
environments is called virtualenv. Virtualenv enables a user
to set up one or more isolated Python environments without
system administrator rights. The combination of these two tools
enables the end user to set up various custom environments with
specific versions of dependencies. For pure Python projects, pip
and virtualenv are cross platform and independent of the host
operating system package manager. However, pip is less suited
for impure Python projects. Some Python libraries depend on non-
Python run time libraries and/or non-Python development headers
compile time, making them ‘‘impure’’. A recent improvement to
the Python Packaging system is the introduction of wheels.Wheels
are pre-compiled binary Python packages. These do not require
compilation and will work if the packaged library does not have
unusual requirements. An example of a independent binary wheel
is Numpy. Numpy only depends on Python and a small set of sys-
tem libraries. The Application Binary Interface (ABI) differs across
host platforms and python versions, requiring a wheel for every
platform and python combination. These are supplied on PyPi and
the correct version is automatically selected by pip on installation.

Problems arise for example, with the python-casacore package,
which has more unusual dependencies. Python-casacore depends
on the casacore package and both packages need to have a match-
ing ABI. If the version of casacore differs between compile time
and run time, the library does not work. Pip does not have any
control over reinforcing the shared library version. This would
imply thatweneed to create, upload andmaintainwheels for every

casacore released.Moreover,with every casacore releasewewould
also need to create a wheel for every OS and supported profile.
The exponential growth of this cartesian product quickly becomes
cumbersome for the package maintainers.

These limitations combined with pip’s inability to handle non-
Python libraries, make pip an ill suited candidate for our packaging
effort. Nevertheless, this does not mean pip and KERN cannot be
combined.

The approach we adopt is that we prepackage impure python
libraries and bundle them with KERN. These Python packages are
then precompiled against a set of specific library versions. This
guarantees the ABIs always match up. Users can then augment the
system python installation, or a Python virtual environment, with
packages from the packaging index using pip.

Although KERN supports both Python 2 and Python 3, most
Python packages in KERN only support Python version 2. For now,
the only package that supports Python 3 is python-casacore. The
KERN Python 3 package for casacore is named python3-casacore.

3.3. Collaboration with Debian

Ubuntu is directly based onDebian and thus is similar toDebian.
Nonetheless, due to version differences in the bundled libraries in
each distribution, KERN packages are unlikely to run on Debian.
Fortunately the packaging procedure is identical for Debian and
Ubuntu, which makes creating true Debian packages a matter of
a recompilation of the source package.

In contrast, the build system, dependency management and
library management for RPM is completely different. Porting our
packages to RPM is non-trivial, and maintaining support for RPM
based distributions would imply doubling the required effort.

We have established a collaboration with Debian developers,
and some packages from KERN (e.g. casacore and aoflagger)
have been incorporated into Debian directly. These packages have
been uploaded to the Debian archive, and changes are synchro-
nised between KERN and the Debian archive.

Not all KERN packages are suitable for uploading to Debian.
Packages with a small user base or packages that are fragile and
receive continuous fixes (as opposed to formal release) are not
well suited to this distribution model, since it can take some time
before a package ends up in a Debian release. For the more stable
packages in KERN, we expect a continuation of this effort, with
more packages ending up in Debian in the future.

4. Usage

To use the packages of KERN, one needs to add the KERN
remote repository to the system. It is recommended to use the
latest released version, which is KERN-2 at time of writing. KERN-
2 is packaged for Ubuntu 16.04: using the packages on a different
distribution or versionwillmost likely fail. If runningUbuntu 16.04
is not an option on a particular system, we recommend using
Docker, Singularity (see below) or a virtual machine.

The add-apt-repository command should be used to add
the KERN repository to a system. Some packages in KERN depend
on Ubuntu packages in the multiverse and restricted repos-
itories (CUDA is an example of such a dependency). Once the local
cache is updated using apt-get update the package cache can be
searched using apt-cache search PACKAGE and packages can
be installed using the apt-get install PACKAGE command.

In case of an unexpected fault, it is important to ensure that
the latest versions of all packages are being used (by running apt
update and apt upgrade), before reporting new issues.

Missing packages can be nominated for inclusion in KERN by
requesting the packaging on the issue tracker.1

1 https://github.com/kernsuite/packaging/issues.

https://github.com/kernsuite/packaging/issues


Download English Version:

https://daneshyari.com/en/article/6905882

Download Persian Version:

https://daneshyari.com/article/6905882

Daneshyari.com

https://daneshyari.com/en/article/6905882
https://daneshyari.com/article/6905882
https://daneshyari.com

