
Astronomy and Computing 24 (2018) 117–128

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Pipeline Collector: Gathering performance data for distributed
astronomical pipelines
A.P. Mechev a,*, A. Plaat b, J.B. Raymond Oonk a,c, H.T. Intema a, H.J.A. Röttgering a

a Leiden Observatory, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
b Leiden Institute of Advanced Computer Science, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
c ASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands

a r t i c l e i n f o

Article history:
Received 18 April 2018
Accepted 21 June 2018
Available online 30 June 2018

Keywords:
Radio astronomy
Performance analysis
Profiling
High performance computing

a b s t r a c t

Modern astronomical data processing requires complex software pipelines to process ever growing
datasets. For radio astronomy, these pipelines have become so large that they need to be distributed across
a computational cluster. This makes it difficult to monitor the performance of each pipeline step. To gain
insight into the performance of each step, a performance monitoring utility needs to be integrated with
the pipeline execution. In thisworkwe have developed such a utility and integrated it with the calibration
pipeline of the Low Frequency Array, LOFAR, a leading radio telescope. We tested the tool by running the
pipeline on several different compute platforms and collected the performance data. Based on this data,
we make well informed recommendations on future hardware and software upgrades. The aim of these
upgrades is to accelerate the slowest processing steps for this LOFAR pipeline. The pipeline_collector suite
is open source and will be incorporated in future LOFAR pipelines to create a performance database for
all LOFAR processing.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Astronomical data often requires significant processing before
it is considered ready for scientific analysis. This processing is done
increasingly by complex and autonomous software pipelines, often
consisting of numerous processing steps, which are run without
user interaction. It is necessary to collect performance statistics
for each pipeline step. Doing so will enable scientists to discover
and address software and hardware inefficiencies and produce
scientific data at a higher rate. To identify these inefficiencies, we
have extended the performance monitoring package tcollector1
(Apache, 2017). The resulting suite, pipeline_collector, makes it
possible to use tcollector to record data for complex pipelines.
We have used a leading radio telescope as the test case for the
pipeline_collector suite. The discoveries made with our software
will help remove bottlenecks and suggest hardware requirements
for current and future processing clusters. We summarize our
findings in Table 1 in Section 3.

Over the past two decades, processing data in radio astronomy
has increasingly moved from personal machines to large compute
clusters. Over this time, radio telescopes have undergone upgrades
in the form of wide band receivers and upgraded correlators

* Corresponding author.
E-mail address: apmechev@strw.leidenuniv.nl (A.P. Mechev).

1 https://github.com/OpenTSDB/tcollector.

(Broekema et al., 2018; Gupta et al., 2017). In addition, several
aperture synthesis arrays such as the LowFrequencyArray (LOFAR,
Van Haarlem et al., 2013), MurchisonWidefield Array (MWA Lons-
dale et al., 2009; Tingay et al., 2013) and MeerKAT (Jonas, 2009)
have begun observing the radio sky, leading to an increase of data
rates by up to 3 orders of magnitude (Wu et al., 2013; Davidson,
2012).

As the data acquisition rate has increased, data size has entered
the Petabyte regime, and processing requirements increased to
millions of CPU-hours. In order for processing to match the acqui-
sition rate, the data is increasingly processed at large clusters with
high-bandwidth connections to the data. An important case where
data processing is done at a high throughput cluster is the LOFAR
radio telescope.

The LOFAR telescope is a European low frequency aperture
synthesis radio telescope centered in the Netherlands with sta-
tions stretching across Europe. This aperture synthesis telescope
requires significant data processing before producing scientific
images (Van Weeren et al., 2016; Williams et al., 2016; Smirnov
and Tasse, 2015; Oonk et al., 2014). In this work, we will use
our performance monitoring utility, pipeline_collector,2 to study
the first half of the LOFAR processing, the Direction Independent
(hereafter DI) pipeline.

2 https://gitlab.com/apmechev/pipeline_collector.git.

https://doi.org/10.1016/j.ascom.2018.06.005
2213-1337/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ascom.2018.06.005
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2018.06.005&domain=pdf
mailto:apmechev@strw.leidenuniv.nl
https://github.com/OpenTSDB/tcollector
https://gitlab.com/apmechev/pipeline_collector.git
https://doi.org/10.1016/j.ascom.2018.06.005


118 A.P. Mechev et al. / Astronomy and Computing 24 (2018) 117–128

Table 1
A table of all the results presented in Section 3.

Result # Description

R1 Native compilation of the software performs comparably to
pre-compiled binaries on two test machines.

R2 The processing steps do not appear to accelerate significantly on a
faster processor or with larger cache size.

R3 Both calibration steps (calib_cal and gsmcal_solve) show linear
correlation between speedup and memory bandwidth.

R4 Disk read/write speed does not affect the completion time of the
slowest steps.

R5 Both calibration steps do not use large amounts of RAM despite
processing data on the order of Gigabytes.

R6 The calib_cal step can suffer up to 20% of Level 1 Instruction Cache
misses, while gsmcal only has 5% of these misses.

R7 Both calibration steps are impacted by Level 2 Cache eviction at
comparable rates.

R8 The calib_cal step stalls on resources 70% of cycles while the gsmcal
step only 30% of them.

R9 The calib_cal uses the CPU at full efficiency for only 10% of the CPU
cycles.

One major project for the LOFAR telescope is the Surveys Key
Science Project (SKSP) (Shimwell et al., 2017). This project con-
sists of more than 3000 observations of 8 h each, 600 of which
have been observed. These observations need to be processed by
a DI pipeline, the results of which are calibrated by a Direction
Dependent (DD) pipeline. The DI pipeline is implemented in the
software package prefactor.3 The prefactor pipeline is itself split
into four stages and implemented at the SURFsara Grid location
at the Amsterdam e-Science centre (SURF, 2018; Mechev et al.,
2017). The automation and simple parallelization has decreased
the run time per dataset from several days to six hours, making
it comparable to the observation rate. To better understand and
optimize the performance of the prefactor pipeline, we require
detailed performance information for all steps of the processing
software.Wehave developed autility to gather this information for
data processing pipelines running ondistributed compute systems.

In this work, we will use the pipeline_collector utility to study
the LOFAR prefactor pipeline and suggest optimization based on
our results. To test the software on a diverse set of hardware, we
will set up the monitoring package on four different computers
and collect data on the pipeline’s performance. Using this data, we
discuss several aspects of the LOFAR software which we present
in Table 1. Finally we discuss the broader context of these opti-
mizations in relation to the LOFAR SKSP project and touch on the
integration of pipeline_collector with the second half of the data
processing pipeline, the DD calibration and imaging.

1.1. Related work

Scientific fields that need to process large datasets employ some
type of data processing pipelines. Such pipelines include e.g. solar
imaging (Centeno et al., 2014), neuroscience imaging (Strother et
al., 2004) and infrared astronomy (Ott, 2010).While these pipelines
often log the start and finishing times of each step (using tools
such as pegasus-kickstart (Vöckler et al., 2006)), they do not collect
detailed time series performance data throughout the run.

At a typical compute cluster the performance of every node in
a distributed systems is monitored using utilities, such as Ganglia
(Massie et al., 2004). These tools only monitor the global system
performance. If one is interested in specific processes, then the
Linux procfs (Bowden, 2009) is used. The procfs system can be used
to analyze the performance of individual pipeline steps. Likewise,
the Performance API (PAPI, Mucci et al., 1999) is a tool which
collects detailed low level information on the CPU usage per pro-
cess. Collecting detailed statistics at the process level is required to

3 Available at https://github.com/lofar-astron/prefactor.

understand and optimize the performance of the LOFAR pipeline
and we will integrate PAPI into pipeline_collector in the future.
Finally, DTrace (Gregg and Mauro, 2011) is a Sun Microsystems
tool which makes it possible to write profiling scripts that access
data from the kernel and can be used to monitor process or system
performance at run time with minimal overhead. As DTrace was
not installed on either of the processing clusters, we have not used
it to monitor the pipeline’s performance.

The Linux procfs system and PAPI record data which is already
made available by the Linux kernel. This option incurs insignificant
overhead as it uses data the kernel and processor already log.
Likewise PAPI reads performance counters that the CPU automati-
cally increments during processing. These profiling utilities can run
concurrently with the scientific payload without using more than
1%–2% of system resources. Their low overhead is why we choose
to use them to collect performance data.

Other tools for performance analysis such as Valgrind (Nether-
cote and Seward, 2007) collect very detailed performance infor-
mation. This comes at the expense of execution time: running
with Valgrind, the processing time slows by up to two orders
of magnitude. As such, we do not use Valgrind along the LOFAR
software.

2. Measuring LOFAR pipeline performance with
pipeline_collector

We developed the package pipeline_collector as an extension
of the performance collection package tcollector. pipeline_collector
makes it possible to collect performance data for complex multi-
step pipelines. Additionally, it makes it easy to record performance
data from other utilities. A performance monitoring utility that we
plan to integrate in the future is the PAPI tools described in Section
1.1. The resulting performance data was recorded in a database
and analyzed. For our tests, we used the LOFAR prefactor pipeline,
however with minor modifications, any multi-step pipeline can be
profiled.

tcollector is a software package that automatically launches
‘collector’ scripts. These scripts are samples of the specific system
resource and send the data to the main tcollector process. This
process then sends the data to the dedicated time series database.
We created custom scripts to monitor processes launched by the
prefactor pipeline (Appendix A.1).

In this work, we use a sample LOFAR SKSP dataset as a test
case. A particular focus was to understand the effect of hardware
on the bottlenecks of the LOFAR data reduction. To gain insight
into the effect of hardware on prefactor performance, the data was
processed on four different hardware configurations (Table 2). As

https://github.com/lofar-astron/prefactor


Download English Version:

https://daneshyari.com/en/article/6905930

Download Persian Version:

https://daneshyari.com/article/6905930

Daneshyari.com

https://daneshyari.com/en/article/6905930
https://daneshyari.com/article/6905930
https://daneshyari.com

