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a b s t r a c t

Objective detection of specific patterns in statistical distributions, like groupings or gaps or abrupt
transitions between different subsets, is a task with a rich range of applications in astronomy: MilkyWay
stellar population analysis, investigations of the exoplanets diversity, Solar Systemminor bodies statistics,
extragalactic studies, etc. We adapt the powerful technique of the wavelet transforms to this generalized
task, making a strong emphasis on the assessment of the patterns detection significance. Among other
things, our method also involves optimal minimum-noise wavelets and minimum-noise reconstruction
of the distribution density function. Based on this development, we construct a self-closed algorithmic
pipeline aimed to process statistical samples. It is currently applicable to single-dimensional distributions
only, but it is flexible enough to undergo further generalizations and development.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, the wavelet analysis technique is frequently used
in various fields of astronomy. It proved a powerful tool in the
time-series analysis, in particular to trace the time evolution of
quasi-periodic variations (Foster, 1996; Vityazev, 2001). So far, the
time-series analysis remains the major application domain of the
wavelet transform, and most of the wavelet methodology and re-
sults are tied to this field. However, there are other brancheswhere
this technique appeared promising, in particular in the analysis of
statistical distributions. In multiple astronomical applications we
deal with statistical samples and distributions of various objects.
For example, the last 20 years brought up a rich diversity of ex-
oplanetary systems, and investigating their distributions gives a
tremendous amount of information about the process of planet
formation, their migration and dynamical evolution (Cumming,
2010). Other possible applications include the analysis of Milky
Way stellar population that becomes more important with the
emergingGAIAdata (Brownet al., 2016), and the statistical analysis
of minor bodies distributions in Solar System.

We emphasize that we formulate our goal here as ‘patterns
detection’ rather than ‘density estimation’. The latter would lit-
erally mean to estimate the probability density function (p.d.f.)
of a sample, but instead we aim to detect easily-interpretable
structures and shapes in this p.d.f., like e.g. clusters of objects,
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or paucities, or quick gradients. Such inhomogeneities often carry
hidden knowledge about physical processes that objects of the
sample underwent. In such away, our task becomes related to data
mining techniques and cluster analysis.

First attempts to apply the wavelet transform technique to
reveal clumps in stellar distributions date back to 1990s (Chereul
et al., 1998; Skuljan et al., 1999), and Romeo et al. (2003, 2004)
suggested the use of wavelets for denoising results of N-body
simulations. Nowadays, wavelet transforms are quite routinely
used to analyse CMB data fromWMAP (McEwen et al., 2004, 2017).
The very idea of ‘wavelets for statistics’ is not novel too (Fadda et
al., 1998; Abramovich et al., 2000).

When applied to these tasks, wavelets allow to objectivize the
terms like the ‘detail’ or ‘structural pattern’ in a distribution, and
easily formalize the task of ‘patterns detection’. However, there are
several crucial issues in this technique that either remain unre-
solved or solutions available in the literature look unsatisfactory
and sometimes even flawed. In particular, the following matters
raise questions.

1. Applying discrete wavelet transforms (DWTs) in this task
seems unnatural. A major argument in favour of the DWT
in 1990s might be to improve the computing performance.
Nowadays, computing capabilities do not limit the practical
use of continuous wavelet transforms (CWTs). Besides, the
CWT mathematics is easier in many aspects.

2. Most if not all authors perform preliminary binning of the
sample, or another kind of smoothing, before they apply a
wavelet transform. It is an unnecessary and possibly even
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harmful step. Small-scale structures are averaged out by the
binning, and wavelets cannot ‘see’ them after that.

3. There is a big issue with correct determination of the statis-
tical significance at the noise thresholding stage (discussed
below).

4. It was not verified, whether the classic and typically used
wavelets are indeed suitable in this task. Perhaps a system-
atic search is necessary, among wavelets of different shapes
and utilizing some objective criteria of optimality.

A crucial problem of any statistical analysis is how to justify
the statistical significance of the results. Determination of the sta-
tistical significance was always recognized as an important issue
in this task. Unfortunately, approaches developed for the wavelet
analysis of time series are not applicable for distribution analysis.
Nonetheless, several schemes are available in the literature of
how to do significance testing of the wavelet coefficients derived
from a statistical sample (e.g. Skuljan et al., 1999; Fadda et al.,
1998). But all these works share one common flaw: they define
the significance of an individual wavelet coefficient, but test in
turn multiple coefficients at once. In practice it leads to a dramatic
increase of the false detections rate above the predicted level.

Consider that we perform Nt independent significance tests on
the same sample, and every individual test is tuned to have a small
enough false alarms probability (or p-value) β . The total number of
false alarms is then ∼ βNt , and it may become unpredictably large
because of large Nt . Let Nd be the number of significant (‘detected’)
wavelet coefficients that passed the test. Then the fraction of false
alarms among the detected coefficients is βrel ∼ βNt/Nd. Usually
βrel ≫ β , so the relative fraction of false alarms becomes much
larger than the requested ‘false alarm probability’, paradoxically
compromising the latter term. In other words, the false alarm
probability is in factmisapplied in this task. In practice itmay easily
appear that the majority of the wavelet coefficients that formally
passed their individual significance tests, appear in turn just noisy
fluctuations.

In applications, the attention is paid to every detected detail
of the distribution. Each false-detected wavelet coefficient trails
a false ‘pattern’ in the recovered distribution. We guess that a
researcher would expect that all structures that were claimed
significant by the analysis algorithm, are significant indeed. So our
intention is to narrow the ‘false detection’ term from ‘an individual
wavelet coefficient was wrongly claimed significant’ to a more
stringent ‘at least one of many wavelet coefficients was wrongly
claimed significant’. This triggers an effect generally similar to the
one known as the ‘bandwidth penaly’ in the periodogram analysis
of time series (Horne and Baliunas, 1986; Schwarzenberg-Czerny,
1998; Baluev, 2008).

In addition to what said above, only Monte Carlo simulations
can currently be used to calculate the necessary p-values when
testing the CWT significance. But numerical simulations are ob-
viously inefficient, because they are very CPU-expensive and lack
the generality. Some basic initial work on this problem was made
in Baluyev (2005). In this paper we treat analytically the above-
mentioned issues, and present the entire analysis pipeline.

2. Overview of the paper

In the literature there is a deficit of research dedicated to the
task stated above, and there is a diversity of lesser sub-problems
yet to be solved. Althoughmany useful partial results are available,
the very formalism of this task is still under construction, so there
is no complete and self-consistent theory that we could use here
‘as is’. Below we consider the following issues:

1. Adaptation of the CWT technique to statistical samples and
distributions (Section 3);

2. Characterization of the noise that appears in the wavelet
transform and construction of the signal detection criterion
(Section 4);

3. Control of the non-Gaussian noise in the CWT that appears
due to the small-number statistics and limits applicability of
the entire technique (Section 4);

4. Search of optimalwavelets that improve the efficiency of the
analysis (Section 5);

5. Optimal reconstruction of the distribution function itself
from its CWT after noise thresholding (Section 6);

6. Numerical simulations and tests aimed to verify our theo-
retic results and constructions, demonstrate themain issues
of the technique, and determine limits of its practical appli-
cability (Section 7).

Finally, in Section 8 we provide a brief summary of our wavelet
analysis algorithm.

3. Wavelet transforms

3.1. Basic definitions and formulae

We adopt the classic definition of the CWT from Grossman and
Morlet (1984) with only a minor modification in scaling:

Y (a, b) =

∫
+∞

−∞

f (x)ψ
(
x − b
a

)
dx. (1)

Here, f (x) is an input function of the CWT. In this paper, it is
meant to be a p.d.f. The kernel ψ(t) is meant to be a wavelet.
The latter term does not have a stable and strict definition, but at
least ψ must be well localized together with its Fourier transform
ψ̂ . Classic definitions also contain normalization factors in (1),
typically 1/

√
a, which we discard here.

The integral transform (1) is similar to a convolution, but con-
tains two parameters: the scale a and the shift b. Contrary to the
usual convolution, the CWT is easily invertible. Multiple inversion
formulae are available, in particular based on Liu et al. (2015) we
can write:

f (x) =
1

Cψγ

∫
+∞

−∞

∫
+∞

−∞

Y (a, b)γ
(
x − b
a

)
dadb
|a|3

,

Cψγ =

∫
+∞

−∞

γ̂ (ω)ψ̂∗(ω)
dω
|ω|
. (2)

Here, the choice of the reconstruction kernel γ (t) is rather arbi-
trary: it is mainly restricted by the mutual admissibility condition
0 < |Cψγ | < +∞. One of the most famous inversion formulae
(Grossman andMorlet, 1984; Vityazev, 2001) contains γ = ψ , and
it is similar to the original CWT (1). It requires that the wavelet
must satisfy the classic admissibility condition 0 < Cψψ < +∞,
implying in particular that ψ̂(0) = 0, and hence ψ(t) must
integrate to zero. This special case can be viewed as an orthogonal
projection in the Hilbert space of Y , while other γ correspond to
oblique projections.

The generalized inversion formulae (2) can be verified by ap-
plying the Fourier transform to it.

An alternative definition of the CWT can be written down as

Υ (κ, s) =

∫
+∞

−∞

f (x)ψ(κx + s)dx, (3)

where κ = 1/a is a wavenumber-like parameter, while s =

−b/a is a phase-like parameter. In terms of κ and s, the inversion
formula (2) attains the following shape:

f (x) =
1

Cψγ

∫
+∞

−∞

∫
+∞

−∞

Υ (κ, s)γ (κx + s)dκds. (4)



Download English Version:

https://daneshyari.com/en/article/6906009

Download Persian Version:

https://daneshyari.com/article/6906009

Daneshyari.com

https://daneshyari.com/en/article/6906009
https://daneshyari.com/article/6906009
https://daneshyari.com

