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a b s t r a c t

In this communication, a reliable Quantitative Structure−Property Relationship (QSPR) model is developed

to predict the refractive indices, nD, of ionic liquids at different temperatures. A dataset comprising 931

experimental data values of refractive index (λ = 589 nm) for 97 ionic liquids (extracted from the NIST

Standard Reference Database) was used to develop and evaluate the model (80% of the data used as a training

set and 20% as a test set). In this study, the effects of both anions and cations are considered in the development

of the model. Genetic function approximation (GFA) is applied to select the model parameters (molecular

descriptors) and develop a linear QSPR model. Statistical analysis of the performance of the model with respect

to the dataset indicates an average absolute relative deviation (AARD%) of 0.51, a coefficient of determination

(R2) of 0.935, and a root mean square of error (RMSE) of 1.07 × 10−2.

© 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Ionic liquids (ILs) are described as molten salts which are usually

liquids at room temperature or close to room temperature (typically

below 100 °C) due to their ions being poorly coordinated. ILs have

received great interest, mostly in industrial applications, because of

their unusual thermophysical properties such as a negligible vapor

pressure and high thermal stability [1,2]. Primarily, due to their very

low vapor pressure and volatility, most of them are considered as

a “green” alternative to volatile organic solvents which are currently

commonly used in the chemical industry [3]. ILs can be used in numer-

ous applications such as CO2 capturing [4–6], catalysis [7,8], extrac-

tion and separation processes [9–11], surfactants [12–14], polymer

and biopolymer processing [15–17], electroplating [18], solar panels

[19,20], fuel cells [21,22], and many more [23–27]. Another reason

for their attractiveness and interest shown by researchers is due to

the number of permutations in terms of constitution of IL molecules

from anion and cation pairs. Consequently, the ionic liquids could

theoretically be designed to have a desired thermophysical property

by combining different pairs of ions. To explore the “tuneability” and

“designability” features of ILs, models have to be developed to re-

late the thermophysical properties to chemical structure or other

physicochemical properties. In this paper, the relationship between
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the refractive index and chemical structure is determined and an ap-

propriate QSPR model is developed.

Refractive index (nD) is defined by IUPAC as “the ratio of the speed

of light in vacuum to that in a given medium” [28]. Refractive index

is a fundamental physical property, especially for optics related re-

search fields, and it is used to verify a material and check its purity,

or to determine the concentration of a mixture. It can also provide

useful information when studying the forces between molecules or

their behavior in solution. It is also related to other properties such

as the dielectric constant, density, and surface tension through ther-

modynamic equations [29,30].

Despite the simplicity of measurement of refractive index, little

attention has been given to modeling and even measurement of nD of

ILs. However for other types of compounds, several published works

and models are available [31–36]. In the NIST Standard Reference

Database #103b [37], experimental data for more than 700 ILs have

been collected, but the nD has been reported for only 97 compounds.

The first model to predict the nD of ILs was presented by Deetlefs

et al. [38] who related the nD of 9 methylimidazolium based ILs, using

Eq. (1), to the surface tension (σ ), parachor (P) of the molecule, and

molar refraction (RM).

σ 1/4 =
(

P

RM

) (
n2

D − 1

n2
D + 2

)
(1)

All of the parameters of this model should be measured by experi-

ments or correlated by other experimental properties. In case of new

ILs, this model thus requires other models to predict the parameters
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Fig. 1. The number of ionic liquids in different families.

which result in increased errors in the prediction of nD. In addition,

9 ILs were used to develop this model, and consequently its applica-

bility is limited and its results cannot be generalized. Even with the

limited application, the model cannot correlate the data adequately

and its average absolute relative deviation (AARD) is close to 8%.

The next model was proposed by Gardas and Coutinho [29] who

developed a group contribution method based on experimental data

of 24 imidazolium based ILs comprised of 7 different anions. The

model had 10 parameters and its AARD was 0.18%, but it could not

predict the nD of ILs with different cations. The same approach was

followed by Soriano et al. [39] and Freireet al. [40] using a few new

imidazolium ILs, but their models suffered the same problems as that

of Gardas and Coutinho.

The aim of this study was to develop a widely applicable model

to predict the nD of ionic liquids using the Quantitative Structure–

Property Relationship method.

2. Model development methodology

2.1. Data preparation

The NIST Standard Reference Database #103b was used to extract

nD data of ILs. The database contained refractive index data for 97

unique ILs with 50 different cations and 33 anions. The number of

ionic liquids in different families is presented in Fig. 1. In addition,

the structures of the constituent cations and anions are available in

Tables 1 and 2, respectively. Some of these ILs had multiple data

sources, so it was required to screen and refine the data. In case of mul-

tiple data sources, the most recent source with the lowest reported

uncertainty was selected. Using this approach, 931 experimental data

points were extracted from the NIST database. The data covered a

temperature range from 283 to 363.15 K and nD values ranged from

1.3551 to 1.5778. The names of ILs used in this study, together with

the temperature ranges, values, and uncertainties of nD are listed in

Table 3. The complete dataset, including the original source of the

experimental data are available upon request from the authors.

2.2. Calculation of the descriptors

In order to determine the relationship between the desired prop-

erty and the constituent cation and anion combinations, the descrip-

tors of both ions were calculated for each IL. The Dreiding Force field,

as explained by Chemaxon’s JChem, was employed [41] to optimize

the 3D chemical structure of each cation and anion. The most sta-

ble conformer of each molecule (the one with the smaller energy)

was used as the molecular structure. Thereafter, more than 3000

molecular descriptors were calculated by using the optimized struc-

ture of all cations and anions, separately. These descriptors belong

to 15 classes of descriptors: Constitutional descriptors; Topological

indices; Walk and path counts; Connectivity indices; Information

indices; 2D autocorrelations; Burden Eigen values; Edge-adjacency

indices; Functional group counts; Atom-centered fragments; Molec-

ular properties; topological charge indices; Eigenvalue-based indices;

2D binary fingerprint; 2D frequency fingerprint; and 3D conforma-

tional descriptors.

Ultimately, pair correlation was applied to remove the interrelated

descriptors. Accordingly, pair of descriptors with a correlation coeffi-

cient greater than 0.9 were removed and remaining used to develop

the model.

2.3. Subset selection

In the QSPR approach, it is common to divide the experimental

dataset into two subsets. The “training set” is used to develop and train

the model, and the “test set” to determine the prediction capability

of the model for compounds which were not been used in model

development. In this paper, K-means clustering was used to select

the training and test sets. K-means clustering is a method of cluster

analysis, which aims to partition n observations into k clusters in

which each observation belongs to the cluster with the nearest mean

[42]. As a result, 80% of the experimental data was kept for the training

set and the remainder used as the test set to validate the model.

2.4. Genetic function approximation (GFA) for model development

Genetic Function Approximation (GFA) is a fusion of two appar-

ently distinct algorithms: Multivariate Adaptive Regression Splines

(MARS) of Friedman [43] and Genetic Algorithm (GA) introduced by

Holland [44]. It was originally proposed in the pioneering work of

Rogers and Hopfinger [45]. Generally, the target of most QSPR studies

is to introduce the linear combination of basic functions ϕk(X) of the

features X = [x1, . . . , xm] in the training dataset of size M:

F(X) = b0 +
M∑

k=1

bkϕk(X) (2)

The GFA approach works by generating the initial population of

equations by a random selection of descriptors. The fitness function

used in GFA during the evolution is Friedman’s lack of fit (LOF) score,

which is described by the following formula:

LOF(model) = 1

N

LSE(model)(
1 − (c+1+(d×p))

N

)2
(3)

In this LOF function, c is the number of non-constant basis func-

tions, N is the number of samples in the dataset, d is a smoothing

factor to be set by the user, p is the total number of parameters in the

model, and LSE is the least square error of the model. Employment

of LOF leads to models with better prediction without the problem of

over-fitting.

The initial QSPR models are developed by selection of random sets

of descriptors from the pool. The next step is genetic recombination

or a crossover process conducted on the linear string of descriptors:

Two best models in term of their fitness are selected as parents. Then,

each parent is split randomly in two parts from a crossing point, and

the first substring of the first parent combined with the second sub-

string of the second parent to create two new children. Next, the best

new child model replaces the worst model. This process is continued

until no significant fitness improvement of the model is observed in

the population. For a population of 300 models, 3000–10,000 genetic

operations are normally sufficient to achieve convergence [42,46].

3. Results and discussion

While developing the model, it was found that a linear summation

of functional groups could produce a precise and easy-to-use model.

In addition, the nD of ILs showed a linear dependency with regard to

temperature. Hence, the resultant model was a 9-parameter linear

Please cite this article as: M. Sattari et al., Prediction of refractive indices of ionic liquids – A quantitative structure-property relationship

based model, Journal of the Taiwan Institute of Chemical Engineers (2015), http://dx.doi.org/10.1016/j.jtice.2015.02.003

http://dx.doi.org/10.1016/j.jtice.2015.02.003


Download English Version:

https://daneshyari.com/en/article/690605

Download Persian Version:

https://daneshyari.com/article/690605

Daneshyari.com

https://daneshyari.com/en/article/690605
https://daneshyari.com/article/690605
https://daneshyari.com

