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a b s t r a c t

The Blasius and Sakiadis flow of a non-Newtonian Carreau fluid is considered in the present paper. The

boundary layer equations are transformed into non-dimensional form and a new dimensionless parameter

(Deborah number) is introduced. The transformed boundary layer equations are solved with the finite differ-

ence method. The problem is non-similar and is governed by the Deborah number, the power-law index and

the non-dimensional distance along the plate. Velocity profiles and wall shear stress have been calculated for

both cases and a comparison is made between Blasius and Sakiadis flow.

© 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

The problem of fluid flow along a stationary, horizontal, surface

situated in a fluid stream moving with constant velocity is a classical

problem of fluid mechanics that has been solved for the first time in

1908 by Blasius [1]. In the above problem the fluid motion is produced

by the free stream. A similar problem occurs when an infinite surface

moves with a constant velocity in a calm fluid. This problem has been

treated for the first time by Sakiadis [2]. The above flows have been

studied for usual Newtonian fluids as is water and air.

Many rheological models had been tried until 1972 to describe

adequately the behavior of non-Newtonian viscoelastic materials.

Carreau [3] introduced a successful model which is used extensively

up to date. Since then the Carreau model has been used to simulate

non-Newtonian flows around spheres [4–6], over cylinders [7–9], in

cavities [10,11], in pipes [12], in channels [13–16] and in intestines

[17] to mention just a few of them. After an intensive investigation

made in the literature no simulation has been found concerning the

flow of a Carreau fluid over a stationary (Blasius) or moving surface

(Sakiadis) flow which are two fundamental flows in fluid mechanics

and this is the target of the present work.

It is reminded here that many non-Newtonian fluids are used in

chemical engineering (polymer liquids, silicone oils). An example is

given in the following table which contains the properties of some

silicone oils (Table 1).

2. The mathematical model

Consider the flow of a non-Newtonian Carreau fluid along a

horizontal surface with u and v denoting respectively the velocity
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components in the x and y directions, where x is the coordinate along

the surface and y is the coordinate perpendicular to x. The constitutive

equation for a Carreau fluid is given as [8]

τ = μ∞ + (μ0 − μ∞)
[
1 + (λγ̇ )2

](n−1)/2

γ̇ (1)

where μ0 and μ∞ are the viscosities corresponding to zero and infi-

nite shear-rate, λ is the time constant, γ̇ is strain rate tensor and n is

the power-law index. The fluid is characterized as shear-thinning for

0 < n < 1, shear-thickening for n > 1 and Newtonian for n = 1. At low

shear rate the Carreau fluid behaves as Newtonian fluid and at high

shear rate as power-law fluid. This model has advantages over the

simpler power-law model, since most fluids exhibit a low shear-rate

Newtonian plateau and a transition region into the power law regime.

In the current formulation it is assumed that μ∞ is zero. Therefore

the constitutive equation becomes

τ = μ0

[
1 + (λγ̇ )2

](n−1)/2

γ̇ (2)

For boundary layer flows the dominant term in the shear rate is γ̇ .

Therefore the boundary layer equations over the plate are

continuity equation:
∂u

∂x
+ ∂v

∂y
= 0 (3)

momentum equation: u
∂u

∂x
+ v

∂u

∂y
= μ0

ρ

[
1 +

(
λ
∂u

∂y

)2
](n−1)/2

∂2u

∂y2

+ μ0

ρ
(n − 1)λ2

(
∂u

∂y

)2
[

1 +
(
λ
∂u

∂y

)2
](n−3)/2

∂2u

∂y2
(4)

where ρ is the fluid density. The boundary conditions for the free

stream case (Blasius problem) are:

At y = 0: u = 0, v = 0 (5)

As y → ∞, u = u∞ (6)
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Table 1

Physical properties of three silicone oils which behave as Carreau

fluids [6].

Density, Dynamic viscosity, Relaxation time Power-law

ρ (kg/m3) μ0 (Pa s) λ (×10−3 s) index, n

975 9.75 1.15 0.61

976 58.6 2.91 0.46

977 97.7 4.66 0.43

For the moving surface case (Sakiadis problem) we have

At y = 0: u = uw, v = 0 (7)

As y → ∞, u = 0 (8)

where uw and u� are the velocities of the moving surface and the free

stream respectively.

Introducing the following dimensionless quantities and notations

X = ρurefx

μ0
, Y = ρurefy

μ0
, U = u

uref

, V = v

uref

, De = ρλu2
ref

μ0

(9)

the balance equations and the boundary conditions for the Blasius

flow go over in the dimensionless forms

∂U

∂X
+ ∂V

∂Y
= 0 (10)

U
∂U

∂X
+ V

∂U

∂Y
=

[
1 +

(
De

∂U

∂Y

)2
](n−1)/2

∂2U

∂Y2

+ (n − 1)

[
1 +

(
De

∂U

∂Y

)2
](n−3)/2(

De
∂U

∂Y

)2 ∂2U

∂Y2
(11)

U(X, 0) = V(X, 0) = 0, U(X,∞) = 1 (12)

while for Sakiadis flow the equations remain the same with boundary

conditions

U(X, 0) = 1, V(X, 0) = 0, U(X,∞) = 0 (13)

taking into account that for Blasius flow uref = u∞ and for Sakiadis

flow uref = uw respectively. In Eq. (9) X and Y are the longitudinal and

transverse Reynolds number and De is the Deborah number. The wall

shear stress (skin friction) is given by the equation

S = ∂U

∂Y

∣∣∣∣
Y=0

= μ0

ρu2
ref

∂u

∂y

∣∣∣∣
y=0

(14)

The Eqs. (10) and (11) represent a two-dimensional parabolic

problem. Such a flow has a predominant velocity in the streamwise

coordinate which is the direction along the plate. In this type of flow

convection always dominates the diffusion in the streamwise direc-

tion. Furthermore, no reverse flow is acceptable in the predominant

direction. The solution of this problem in the present work is obtained

using a finite volume algorithm as described by Patankar [18]. In order

to obtain complete form of velocity profiles at the same cross-section,

a nonuniform lateral grid has been used. �Y is small value near the

surface (dense grid points near the surface) and increases with Y. A

total of 500 lateral grid cells were used. It is known that the bound-

ary layer thickness changes along X. For that reason, the calculation

domain must always be at least equal to or wider than the boundary

layer thickness. In each case, the goal was to have a calculation domain

wider than the real boundary layer thickness. This has been done by

trial and error. If the calculation domain was thin, the velocity and

temperature profiles were truncated. In this case a wider calculation
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Fig. 1. Mainstream velocity profiles at different distances from the plate leading edge

for De = 5 and n = 0.6 (Blasius flow).
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Fig. 2. Mainstream velocity profiles at different distances from the plate leading edge

for De = 5 and n = 2 (Blasius flow).

domain was used in order to capture the entire velocity and temper-

ature profiles. The parabolic (space marching) solution procedure is

described analytically in the textbook of Patankar [18]. That solution

procedure is implicit and unconditionally stable [19], has been used

extensively in the literature and has been included in fluid mechanics

and heat transfer textbooks [19–21]. The method is used successfully

also by others researchers (see for example, [22])

3. Results and discussion

3.1. Blasius flow

Fig. 1 shows the variation of mainstream velocity at different

non-dimensional distances along the plate for a shear-thinning fluid

with n = 0.6 and Deborah number 5. It is seen that as X increases

the velocity decreases and the boundary layer thickness gets higher

values. In addition the wall shear stress declines continuously. The

same behavior appears in Fig. 2 which concerns a shear-thickening
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