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a b s t r a c t

Revealing hidden patterns in astronomical data is often the path to fundamental scientific breakthroughs;
meanwhile the complexity of scientific enquiry increases as more subtle relationships are sought. Con-
temporary data analysis problems often elude the capabilities of classical statistical techniques, suggest-
ing the use of cutting edge statistical methods. In this light, astronomers have overlooked a whole family
of statistical techniques for exploratory data analysis and robust regression, the so-called Generalized Lin-
ear Models (GLMs). In this paper – the first in a series aimed at illustrating the power of these methods in
astronomical applications –we elucidate the potential of a particular class of GLMs for handling binary/bi-
nomial data, the so-called logit and probit regression techniques, from both a maximum likelihood and a
Bayesian perspective. As a case in point, we present the use of these GLMs to explore the conditions of star
formation activity and metal enrichment in primordial minihaloes from cosmological hydro-simulations
including detailed chemistry, gas physics, and stellar feedback. We predict that for a dark mini-halo with
metallicity ≈ 1.3 × 10−4Z, an increase of 1.2 × 10−2 in the gas molecular fraction, increases the prob-
ability of star formation occurrence by a factor of 75%. Finally, we highlight the use of receiver operating
characteristic curves as a diagnostic for binary classifiers, and ultimately we use these to demonstrate the
competitive predictive performance of GLMs against the popular technique of artificial neural networks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The simple linear regression model has long been a mainstay of
astronomical data analysis, the archetypal problem being to deter-
mine the line of best fit through Hubble’s diagram (Hubble, 1929).
In this approach, the expected value of the response variable,
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Y ∈ Rm, is supposed linearly dependent on its coefficients, β ∈ Rn,
acting upon the set of n predictor variables, X ∈ Rn×m,

E(Y ) = (βTX)T . (1)

The least-squares fitting procedure for performing this type of re-
gression (Isobe et al., 1990) relies on a number of distributional as-
sumptions which fail to hold when the data to be modelled come
from exponential family distributions other than the Normal/Gaus-
sian (Hardin and Hilbe, 2012; Hilbe, 2014). For instance, if the re-
sponse variable takes the form of Poisson distributed count data
(e.g. photon counts from a CCD), then the equidispersion property
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of the Poisson, which prescribes a local variance equal to its condi-
tional mean, will directly violate the key linear regression assump-
tion of homoscedasticity (a common global variance independent of
the linear predictors). Moreover, adopting a simple linear regres-
sion in this contextmeans to ignore another defining feature of the
Poisson: its ability to model data with only non-negative integers.
Similar concerns arise for modelling Bernoulli and binomial dis-
tributed data (i.e., on/off, yes/no) where regression methods op-
timized for continuous and unbounded response variables are of
limited assistance (Hilbe, 2009).

Yet, data analysis challenges of this sort arise routinely in the
course of astronomical research: for example, in efforts to charac-
terize exoplanet multiplicity as a function of host multiplicity and
orbital separation (Poisson distributed data; Wang et al., 2014),
or to model the dependence of the galaxy bar fraction on total
stellar mass and redshift (Bernoulli distributed data; Melvin et al.,
2014). For such regression problems there is a powerful solution
already widely-used in medical research (e.g., Lindsey, 1999), fi-
nance (e.g., de Jong and Heller, 2008), and healthcare (e.g., Gris-
wold et al., 2004) settings, but vastly under-utilized to-date in
astronomy. This is known as Generalized Linear Models (GLMs).
Basic GLMs include Normal or Gaussian regression, gamma and in-
verse Gaussian models, and the discrete response binomial, Pois-
son and negative binomial models.

1.1. Generalized linear models

The class of GLMs, first developed by Nelder and Wedderburn
(1972), take a more general form than in Eq. (1):

E(Y) = g−1 
(βTX)T


, (2)

with the response variable, Y | βTX, belonging to a specified dis-
tribution from the single parameter exponential family and g−1(·)
providing an appropriate transformation from the linear predictor,
(βTX)T , to the conditional mean, µ. The inverse of the mean func-
tion, g−1(·), is known as the link function, g(·). Nelder andWedder-
burn (1972) andMcCullagh and Nelder (1989) laid the foundations
of the GLM estimation algorithm, which is a subset of maximum
likelihood estimation. The algorithm they devised in early software
development is for the most part still used today in the major-
ity of GLM implementations—both in commercial statistical pack-
ages (e.g. SPSS and SAS) and in freeware-type packages (e.g. R and
Python).

GLMs have received a great deal of attention in the statistical
literature. Variations and extensions of the traditional algorithm
have resulted in methodologies, such as: generalized estimating
equations (Liang and Zeger, 1986); generalized additive models
(Hastie and Tibshirani, 1986); fixed and random effects regres-
sion (Breslow and Clayton, 1993); quasi-least squares regression
(Shults and Hilbe, 2014); and more. Bayesian statisticians working
within the GLM framework have explored Gibbs sampling tech-
niques for posterior sampling (Albert and Chib, 1993), various
issues of prior choice (Gelman et al., 2008) and prior-sensitivity
analysis (Doss and Narasimhan, 1994), developed errors-in-
variables treatments (for the case of errors in the predictor vari-
ables; e.g. Richardson and Gilks, 1993 and Mallick and Gelfand,
1996), and devised Gaussian process-based strategies for the use of
GLMs in geospatial statistics (Diggle et al., 2002). TheGLMmethod-
ology thus stands at the base of a wide number of contemporary
statistical methods.

Despite the ubiquitous nature of GLMs in general statistical
applications, there have been only a handful of astronomical
studies applying GLM techniques such as logistic regression
(e.g. Raichoor and Andreon, 2012, 2014 and Lansbury et al.,
2014), Poisson regression (e.g. Andreon and Hurn, 2010); and

the importance of modelling overdispersion in count data (as
facilitated by the negative binomial GLM) has only lately become
appreciated through cosmological research (Ata et al., 2015).
Hence, in this series of papers we aim to demonstrate the vast
potential of GLMs to assist with both exploratory and advanced
astronomical data analyses through the application to a variety of
astronomical inference problems.

The astronomical case studies explored herein focus on an in-
vestigation of the statistical properties of baryons inside simulated
high-redshift haloes, including detailed chemistry, gas physics and
stellar feedback. The response variables are categorical with two
possible outcomes and therefore Bernoulli distributed. In our par-
ticular case, these correspond to either (i) the presence/absence of
star formation activity, or (ii) metallicity above/below the critical
metallicity (Zcrit) associated with the first generation of stars. The
predictor variables are properties of high-redshift galaxies with
continuous domain.

The outline of this paper is as follows. In Section 2 we describe
the cosmological simulation and the dataset of halo properties.We
describe various forms of binomial GLM regression in Section 3. In
Section 4 we present our analysis of the simulated dataset for the
two selected response variables. In Section 5 we discuss critical
diagnostics of our analysis, and compare our classifications with
those that use artificial neural networks in Section 6. Finally, in
Section 7 we summarize our conclusions.

2. Simulations

In order to ascertain the key ingredients that affect star
formation in the earlyUniverse,we study cosmological simulations
of high-redshift galaxies and proto-galaxies. In the following, we
describe the simulated data used to exemplify the unique benefits
of binomial GLM regression for modelling galaxy properties that
are naturally addressed as a dichotomous problem.

2.1. Runs

The data set used in this work is retrieved from a cosmological
hydro-simulation based on Biffi and Maio (2013) (see also Maio
et al., 2010, 2011 and de Souza et al., 2014). The code employed to
run the simulation is gadget-3, a modified version of the parallel
N-body, smoothed-particle hydrodynamics code named gadget-
2 (Springel, 2005). The modifications include: a relevant chemical
network to self-consistently follow the evolution of different
atomic and molecular chemical species (e.g., Yoshida et al., 2003;
Maio et al., 2006, 2007, 2009); metal pollution according to proper
stellar yields and lifetimes for both the pristine population III
(Pop III) and the following population II/I (Pop II/I) star forming
regime (Tornatore et al., 2007; Maio et al., 2010); radiative gas
cooling from molecular, resonant and fine-structure lines (Maio
et al., 2007). The actual stellar population is determinedby the local
heavy-element mass fraction (metallicity, Z) and the existence of
a critical threshold Zcrit = 10−4Z1 (e.g., Omukai, 2000; Bromm
et al., 2001) below which Pop III star formation takes place and
above which Pop II/I stars are formed.

The initial matter density field is sampled at redshift z = 100
adopting the standard cold dark matter model with cosmological
constant Λ, ΛCDM. The cosmological parameters at the present
time are assumed to be: Ω0,Λ = 0.7, Ω0,m = 0.3, Ω0,b = 0.04,
for cosmological-constant,matter and baryon density, respectively

1 Despite the uncertainties on Zcrit , it is safe to assume values around Zcrit =

10−4Z , in fact even order-of-magnitude deviationswould not change significantly
the final results in terms of star formation and cosmic metal pollution (see details
in Maio et al., 2010).
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