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a b s t r a c t

In astronomical applications of machine learning, the distribution of objects used for building a model
is often different from the distribution of the objects the model is later applied to. This is known as
sample selection bias, which is a major challenge for statistical inference as one can no longer assume
that the labeled training data are representative. To address this issue, one can re-weight the labeled
training patterns to match the distribution of unlabeled data that are available already in the training
phase. There are many examples in practice where this strategy yielded good results, but estimating the
weights reliably from a finite sample is challenging. We consider an efficient nearest neighbor density
ratio estimator that can exploit large samples to increase the accuracy of the weight estimates. To solve
the problem of choosing the right neighborhood size, we propose to use cross-validation on a model
selection criterion that is unbiased under covariate shift. The resulting algorithm is our method of choice
for density ratio estimationwhen the feature space dimensionality is small and sample sizes are large. The
approach is simple and, because of themodel selection, robust. We empirically find that it is on a par with
established kernel-based methods on relatively small regression benchmark datasets. However, when
applied to large-scale photometric redshift estimation, our approach outperforms the state-of-the-art.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In many machine learning applications labeled (training) and
unlabeled (test) data do not follow the same distribution. One
reason can be that the labeled patterns have not been sam-
pled randomly. In astronomy such a sample selection bias arises
because objects that are expected to show more interesting prop-
erties are preferred when it comes to costly high-quality spec-
troscopic follow-up observations; other objects whose scientific
value may not be that obvious (e.g., seemingly star-like objects)
may be overlooked (Mortlock et al., 2011). One way to address
this bias is to weight the labeled training sample according to
the ratio between the two probability distributions (Huang et al.,
2007). As this true ratio is usually not available, one has to esti-
mate it from a finite sample. The crucial point is to control the vari-
ance of the estimator. Empirically, it seems promising to reduce
the variance of the estimator by accepting a slightly higher bias
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(Sugiyama et al., 2008). This gives rise to ratio estimators that, in
practice, perform better than the naïve approach of estimating the
two densities separately.

In this work, we improve a simple nearest neighbor density ra-
tio estimator (Lima et al., 2008) by combining it with a principled
way of performing model selection (Sugiyama and Müller, 2005).
The approach compares well to established kernel-based estima-
tors on a variety of standard, small-sized regression datasets. Fur-
thermore, by selecting proper hyperparameters and by taking huge
amounts of patterns into account,we experimentally show that the
estimator yields better results compared to the state-of-the-art on
a large-scale astronomical dataset.

Let each data point be represented by a feature vector x from
a domain X with a corresponding label y from a domain Y.
We consider scenarios in which the learner has access to some
labeled (source) data S sampled from ps(x, y) and a large sample
of unlabeled (target) data T sampled from pt(x, y). While ps(x, y)
and pt(x, y) may not coincide, we assume that ps(y|x) = pt(y|x)
for all x and that the support of pt is a subset of the support of
ps. This is usually referred to as covariate shift, a particular type
of sample selection bias. In this case the probability density ratio
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between target and source distribution at a given point reduces to
β(x) =

pt (x)
ps(x)

.
Different strategies have been proposed to address covariate

shift, such as finding a common feature space or re-weighting the
source patterns. The latter is conceptually simple, and there are
several approaches to estimate appropriate weights via density
ratio estimation (Huang et al., 2007; Lima et al., 2008; Sugiyama
and Müller, 2005; Bickel et al., 2007; Cortes et al., 2008; Loog,
2012; Quionero-Candela et al., 2009; Izbicki et al., 2014; Kanamori
et al., 2009). These methods are, for example, based on reducing
the problem to probabilistic classification between the target
and source dataset (Bickel et al., 2007), on using kernel-based
methods to match means in an induced Hilbert space (Huang
et al., 2007), or on using nearest neighbor queries to estimate
the mismatch between the densities by counting patterns in local
regions (Lima et al., 2008; Loog, 2012). It is crucial to control the
variance of such an estimator via regularization. Depending on
the algorithm at hand, the regularization can take the form of, for
example, a kernel bandwidth (Huang et al., 2007), the rank of a
low-rank kernel matrix approximation (Izbicki et al., 2014), or a
weight norm (Kanamori et al., 2009). The involved parameters are
often set by heuristics such as the median of pairwise distances
for the kernel bandwidth (Schölkopf and Smola, 2002). As an
alternative, Sugiyama andMüller (2005) suggest a model selection
criterion that is unbiased under covariate shift. In the following,
we employ this criterion for selecting the neighborhood size of
the nearest neighbor estimator via cross-validation. Then, we
empirically show that the resulting algorithm can outperform
the computationallymore expensive state-of-the-art kernel-based
estimator due to its ability to consider larger samples in less time.

This article is structured as follows: in Section 2 we briefly
discuss two state-of-the-art kernel-based estimators that serve
as a baseline in our experimental evaluation. In Section 3 we
present a nearest neighbor-based density ratio estimator and show
how it can be extended to perform automatic model selection. In
Section 4 we evaluate the proposed nearest neighbor density ratio
estimator with integrated model selection in comparison to other
methods on amedium-sized regression benchmark and on a large-
scale astronomical dataset for photometric redshift estimation. In
Section 5we conclude and give possible directions for futurework.

2. Kernel-based density ratio estimation

In density ratio estimation, kernel-based estimators are consid-
ered the state-of-the-art (Sugiyama et al., 2010). Among these, ker-
nel mean matching (KMM) (Huang et al., 2007) and the spectral
series estimator (Izbicki et al., 2014) have shown to perform par-
ticularly well.

Given some input space X, a kernel is a positive semi-definite
function k : X × X → R for which ∀x, z ∈ X : k(x, z) =

⟨Φ(x), Φ(z)⟩H , where Φ : X → H maps elements of the input
space to a kernel-induced Hilbert space H (Aronszajn, 1950). Ker-
nel mean matching aims at matching the means of two distribu-
tions in H by solving the problem

minimize
β

 1
Ns

Ns
i=1

βiΦ(x(s)
i ) −

1
Nt

Nt
i=1

Φ(x(t)
i )

2

H
(1)

subject to βi ∈ [0, B] and

 Ns
i=1

βi − Ns

 ≤ Nsϵ, (2)

where Ns is the number of source domain patterns and Nt is the
number of target domain patterns. The parameter B restricts the
maximumpossible weight and ϵ bounds the deviation of themean
weight from 1. Cortes et al. (2008) show that the solution to Eq. (1)

converges with high probability to the true density ratio if the ker-
nel induced byΦ(x) is universal (Steinwart andChristmann, 2008).
The kernel function, which implicitly defines Φ and H , is typically
chosen from a parameterized family of functions, and the kernel
parameters are parameters of KMM-based approaches.

The spectral series estimator (Izbicki et al., 2014), although
motivated differently, minimizes an unconstrained version of
Eq. (1) for computing training weights. Instead of bounding the
weights via B and their mean via ϵ, the solution is regularized by
the rank J of a low-rank approximation of the kernel Gram matrix
between training points—which results when expanding Eq. (1).
Unlike KMM, the spectral series estimator can compute weights
not only for the source sample, but also for arbitrary patterns.
This allows for selecting the kernel parameters and J via cross-
validation, as we shall see later.

Negative theoretical results in the analysis of weighting meth-
ods (Ben-David et al., 2010; Ben-David and Urner, 2012) suggest
that sample sizes have to be prohibitively large to guarantee re-
liable weights. However, empirically it has been found that re-
weighting often does improve results. Our method is motivated
by typical tasks in astronomy, where we deal with large labeled
samples and huge unlabeled samples in feature spaces of relatively
low dimensionality (e.g., up to R10). For such rather benign sce-
narios, we aim at estimating weights with high accuracy by taking
into account hundreds of thousands of labeled and unlabeled pat-
terns. However, both KMM as well as the spectral series estimator
involve |S| × |T | kernel matrices in their general form. Thus, they
are not directly applicable to scenarioswith hundreds of thousands
of patterns. Special cases might be addressed in a more efficient
way. Still, the general cases with non-linear kernel functions in-
volve the computation of such kernel matrices and, depending on
the method, quadratic programming, matrix inversion, or eigen-
value decomposition, which exhibit at least a quadratic running
time (Bern and Eppstein, 2001; Golub and Van Loan, 1989; Ko-
jima et al., 1989). Therefore, we are considering nearest neighbor-
based density ratio estimation, which can be implemented more
efficiently.

For the matrix decompositions in the spectral series estimator
we used an efficient O(n2)-algorithm (Dhillon, 1998). Both, de-
composition as well as the nearest neighbor search, could be sped
up by using approximation schemes (e.g., see Arya et al., 1994;
Halko et al., 2011), but we decided not to introduce such approxi-
mations with corresponding hyperparameters in our study.

3. Nearest neighbor density ratio estimation revisited

We consider the algorithm proposed by Lima et al. (2008)
to estimate appropriate ratios via nearest neighbor queries, see
Algorithm 1. The efficiency of the approach is ensured via the
use of k–d trees. For the sake of completeness, we briefly sketch
how these spatial data structures can be used to speed up nearest
neighbor search before outlining the details of the density ratio
estimator.

3.1. Nearest neighbor search in low dimensions

A classical k –d tree (Bentley, 1975) is a binary tree constructed
from a d-dimensional point set S ⊂ Rd. The inner nodes
correspond to hyperplanes splitting the data in Rd and the leaf
nodes define a partitioning of S. The tree can be built recursively
in O(|S| log |S|) time. Starting from the root node numbered by 0
and S0 = S, each inner node v with children u and w partitions the
data Sv into two almost equal-sized subsets Su and Sw . If Sv contains
only a single point (or a predefined number of points), v becomes
a leaf node. At tree level j, the datasets are split according to the
median in dimension j mod d + 1.
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