
Astronomy and Computing 12 (2015) 181–190

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

A compression scheme for radio data in high performance computing
K. Masui a,b,∗, M. Amiri a, L. Connor c,d,e, M. Deng a, M. Fandino a, C. Höfer a, M. Halpern a,
D. Hanna f, A.D. Hincks a, G. Hinshaw a, J.M. Parra f, L.B. Newburgh d, J.R. Shaw a,c,
K. Vanderlinde e,d

a Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Rd., Vancouver, V6T 1Z1, Canada
b Canadian Institute for Advanced Research, CIFAR Program in Cosmology and Gravity, Toronto, ON, M5G 1Z8, Canada
c Canadian Institute for Theoretical Astrophysics, 60 St George St, Toronto, ON, M5S 3H8, Canada
d Dunlap Institute for Astronomy & Astrophysics, University of Toronto, 50 St George St, Toronto, ON, M5S 3H4, Canada
e Department of Astronomy & Astrophysics, University of Toronto, 50 St George St, Toronto, ON, M5S 3H4, Canada
f Department of Physics, McGill University, 3600 University St, Montreal, Canada

a r t i c l e i n f o

Article history:
Received 2 March 2015
Received in revised form
2 July 2015
Accepted 3 July 2015
Available online 5 August 2015

Keywords:
Radio astronomy
Data compression
HDF5
High performance computing

a b s t r a c t

We present a procedure for efficiently compressing astronomical radio data for high performance
applications. Integrated, post-correlation data are first passed through a nearly lossless rounding step
which compares the precision of the data to a generalized and calibration-independent form of the
radiometer equation. This allows the precision of the data to be reduced in a way that has an insignificant
impact on the data. The newly developed Bitshuffle lossless compression algorithm is subsequently
applied. When the algorithm is used in conjunction with the HDF5 library and data format, data
produced by the CHIME Pathfinder telescope is compressed to 28% of its original size and decompression
throughputs in excess of 1GB/s are obtained on a single core.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The simultaneous drives to wider fields and higher sensitivity
have led radio astronomy to the cusp of a big-data revolution.
There is a multitude of instruments, including 21 cm cosmology
experiments (Pober et al., 2013; Battye et al., 2013; Canadian
Hydrogen Intensity Mapping Experiment, CHIME; Pober et al.,
2014; Greenhili et al., 2012; van Haarlem et al., 2013; Zheng et al.,
2013; Parsons et al., 2010; Chen, 2012), Square Kilometer Array
Precursors (Johnston et al., 2008; Lonsdale et al., 2009; Booth
et al., 2009), and ultimately the Square Kilometer Array (SKA
Organization, 2015), whose rate of data production will be orders
of magnitude higher than any existing radio telescope. An early
example is the CHIME Pathfinder (Bandura et al., 2014; Newburgh
et al., 2014) which will soon be producing data at a steady rate of
over 4 TB per day. The cost associated with storing and handling
these data can be considerable and therefore it is desirable to
reduce the size of the data as much as possible using compression.

∗ Corresponding author at: Department of Physics and Astronomy, University of
British Columbia, 6224 Agricultural Rd., Vancouver, V6T 1Z1, Canada.

E-mail address: kiyo@physics.ubc.ca (K. Masui).

At the same time, these data volumes produce a significant
data processing challenge. Any data compression/decompression
scheme must be fast enough as to not hinder data processing, and
would ideally lead to a net increase in performance due to the
reduced time required to read the data from disk.

Here, after discussing some general considerations for design-
ing data storage formats in Section 2,we present a scheme for com-
pressing astronomical radio data. Our procedure has two steps: a
controlled (relative to thermal noise) reduction of the precision of
the data which reduces its information entropy (Section 3), and
a lossless compression algorithm—Bitshuffle1—which exploits
this reduction in entropy to achieve a very high compression ra-
tio (Section 4). These two steps are independent in that, while
they work very well together, either of them can be used with-
out the other. When we evaluate our method in Section 5 we
show that the precision reduction improves compression ratios for
most lossless compressors. Likewise, Bitshuffle outperforms
most other lossless compressors even in the absence of precision
reduction.

1 https://github.com/kiyo-masui/bitshuffle.

http://dx.doi.org/10.1016/j.ascom.2015.07.002
2213-1337/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ascom.2015.07.002
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2015.07.002&domain=pdf
mailto:kiyo@physics.ubc.ca
https://github.com/kiyo-masui/bitshuffle
http://dx.doi.org/10.1016/j.ascom.2015.07.002


182 K. Masui et al. / Astronomy and Computing 12 (2015) 181–190

2. Considerations for designing data storage formats

2.1. Characteristics of radio-astronomy data and usage patterns

Integrated, post-correlation radio-astronomy data are typically
at least three dimensional, containing axes representing spectral
frequency, correlation product, and time.2 The correlation prod-
uct refers to the correlation of all antenna input pairs, including
auto-correlations and cross-correlations between different polar-
izations from the same antenna. In a single dish these form the po-
larization channels for each beam and in an interferometer these
are the visibilities. This also applies to beam forming interferome-
ters, where linear combinations of antenna inputs are formed (ei-
ther in analog or digitally) before correlation.

The CHIME collaboration determined that its data are most
commonly accessed along the time axis. That is, it is generally
most efficient for the axis representing time to be the fastest
varying once loaded into memory. This is the case for noise
characterization, radio-frequency interference (RFI) flagging and
system-health monitoring, to name a few. Most importantly, the
map-making pipeline typically produces maps on a per-frequency
basis and is most efficient at processing time-contiguous data.
Though it is sometimes necessary to work with spectra (slices
along the frequency axis) or ‘correlation triangles’ (slices along the
correlation product axis), we find that these use cases normally
only involve a few slices and large I/O operations in these spaces
are rare.

Of course, the CHIME collaboration’s preference for the time
axis to be the fastest varyingwill not apply to all consumers of radio
data. One expects that access patterns might vary considerably
for the diverse applications of radio data, including spectroscopy,
synthesis imaging, and pulsar timing. But as discussed below,
arranging data with time as the fastest varying index is beneficial
for data compression.

2.2. Compression: benefits and requirements

Compression can greatly ease the burden of storing and
handling large data sets, but there are also performance benefits.
Compression algorithms exist whose decompression cost is
negligible compared to the cost of reading from disk. As we will
show, data may be compressed by up to a factor of four in some
cases. As such, the time required to load a dataset from disk into
memory may be reduced by a factor of four using compression.

We previously stated that ordering data with the axis repre-
senting time as the fastest varying ismost efficient for themajority
of I/O operations. This ordering is also beneficial for compression,
since adjacent data points are likely to be highly correlated, pre-
suming that the cadence is such that the spatially-smoothly vary-
ing sky is Nyquist sampled. On the other hand, it is most natural to
record data with time as the slowest varying index since that is the
order in which they are generated by the instrument. To have time
as the fastest varying index, the data must either be buffered in
memory (which is impractical), writtenwith stridedwrites (which
is inefficient) or reordered after acquisition. Since the data are ac-
quired and written only once but read many times, it is logical
to prioritize read-performance over write-performance. Thus, the
CHIME collaboration deemed a post-acquisition reordering step to
be worthwhile.

2 A fourth axis is often introduced when data are ‘folded’ or ‘gated’—i.e., if data
from the on- and off-periods of a switched, calibration noise source are accumulated
separately, or pulsar data is folded on the pulsar’s periodwhich is divided intomany
gates.

The same argument can be used to prioritize data decompres-
sion speed over compression speed. Compression is sufficiently
cheap computationally that even a modest number of processors
should be able to keep up with the acquisition rate of CHIME
Pathfinder data (which will be ∼50 MiB/s depending on runtime
parameters) for almost any compression algorithm. Even if this
were not the case, data could be compressed in parallel post acqui-
sition. On the other hand, one might wish to load several days of
acquired data at once for analysis, and ideally, this would be bound
only by disk read times, not decompression speed.

The decompression cost may not be negligible compared to
read times for files that are cached in memory or stored on
high-performance parallel file systems. This makes it desirable to
have as fast a decompression scheme as possible as the benefits
of speed are not always limited by hard drive access. A multi-
threaded implementation of the decompression algorithm can
thereby result in a significant speed up on multi-core systems.

To summarize all of the foregoing, the following requirements
for a compression scheme emerge:

Unbiased Any lossy compression must not bias the data in any
way.

Nearly lossless Any lossy compression employed must be con-
trolled in a manner that is guaranteed not to significantly
decrease the sensitivity of the data.

Time minor In themulti-dimensional dataset, the axis represent-
ing time should be the fastest varying. This allows for the
efficient reading of small subsets of spectral frequencies
and correlation products but for large periods of time.

Fast decompression To realize the performance gains associated
with compressing the data, we require the time to
decompress the data to be small compared to the time
required to read the data from disk. At the time of
writing, a single hard drive can typically be read at a rate
of ∼100 MiB/s. As such, a compression algorithm with
throughput of∼1 GiB/s on a single processor is desirable.

Threaded When using a parallel file system, or when the file is
cached in system memory, reading throughputs can be
much higher compared to when using a single hard disk.
For decompression to not degrade performance in these
cases, the compression library should be threaded.

Thread-safe While the HDF5 library (see Section 2.3) is not
internally threaded, it may become so in the future. In
addition, programs may attempt to hide the cost of IO
operations by putting them in a separate thread. The
compression library must therefore be thread-safe.

2.3. HDF5 and chunked storage

The Hierarchical Data Format 5 (HDF5) (HDF Group,
1997–2015a) is a widely used data format in astronomy, capable
of storing and organizing large amounts of numerical data. In the
context of this paper, it also has the benefit of allowing for ‘chun-
ked storage’. That is, an HDF5 ‘dataset’—a multidimensional array
of homogeneous type—can be broken up into subsets of fixed size,
called chunks, which are stored in any order on disk, with locations
recorded in a look-up table. This is in contrast to contiguous stor-
age, in which random access is obviously trivial. The advantage of
chunked storage for our purposes is that though the number of el-
ements in a chunk is fixed, its size is not, and as such it may readily
be compressed.

The primary drawback of chunked storage is that full chunks
must be read from disk at a time. As such, to read a single array
element, the full chunk containing thousands of elements must
be read. In practice, this is mitigated by the fact that hard disk
latencies are very long compared to the time required to read data



Download English Version:

https://daneshyari.com/en/article/6906175

Download Persian Version:

https://daneshyari.com/article/6906175

Daneshyari.com

https://daneshyari.com/en/article/6906175
https://daneshyari.com/article/6906175
https://daneshyari.com

