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a b s t r a c t

Machine learning techniques offer a precious tool box for use within astronomy to solve problems involv-
ing so-called big data. They provide ameans tomake accurate predictions about a particular systemwith-
out prior knowledge of the underlying physical processes of the data. In this article, and the companion
papers of this series, we present the set of Generalized Linear Models (GLMs) as a fast alternative method
for tackling general astronomical problems, including the ones related to themachine learning paradigm.
To demonstrate the applicability of GLMs to inherently positive and continuous physical observables, we
explore their use in estimating the photometric redshifts of galaxies from their multi-wavelength pho-
tometry. Using the gamma family with a log link function we predict redshifts from the PHoto-z Accuracy
Testing simulated catalogue and a subset of the Sloan Digital Sky Survey from Data Release 10. We obtain
fits that result in catastrophic outlier rates as low as∼1% for simulated and∼2% for real data. Moreover,
we can easily obtain such levels of precision within a matter of seconds on a normal desktop computer
and with training sets that contain merely thousands of galaxies. Our software is made publicly available
as a user-friendly package developed in Python, R and via an interactive web application. This software
allows users to apply a set of GLMs to their own photometric catalogues and generates publication qual-
ity plots with minimum effort. By facilitating their ease of use to the astronomical community, this paper
series aims to make GLMs widely known and to encourage their implementation in future large-scale
projects, such as the Large Synoptic Survey Telescope.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Generalized LinearModels (GLMs), as introduced by Nelder and
Wedderburn (1972), offer a well established statistical framework
for robust modelling and prediction making. It allows the applica-
tion of regression analysis when the observed quantity originates
from an exponential family distribution rather than a Gaussian
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(or Normal; e.g., Hardin and Hilbe, 2012; Hilbe, 2014). As a re-
sult, GLMs offer a readily interpretable and physically-motivated
approach (via family distributions) to machine learning (ML) that
can be applied to a variety of astronomical data sets. Despite be-
ing widely used across a range of scientific disciplines, such as
biology (Brown and Rothery et al., 1993; Ahrestani et al., 2013),
medicine (Lindsey, 1999), and economics (Pindyck and Rubinfeld,
1998; de Jong andHeller, 2008), and its availabilitywithin the over-
whelming majority of contemporary statistical software packages
(e.g., R, R Core Team 2014; SAS, Inc. 2003; and STATA, StataCorp
2009), GLMs remain almost terra incognitawithin the astronomical
community (de Souza et al., 2014a).

One particular problem which presents itself as a candidate
for the implementation of GLMs is the photometric redshift
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(photo-z) estimation of galaxies. Although precise redshifts can in
principle be directly determined through identification of known
absorption or emission lines in the optical and/or near-infrared
spectrum of each target galaxy, the observational cost of this
procedure can quickly become prohibitive for large scale surveys.
The only feasible alternative in such cases is to use available multi-
wavelength photometry to infer approximate photo-zs instead,
but this is not always a simple task.

There exist a plethora of different spectra emitted from galaxies
throughout the Universe. Their characteristic features carry sig-
natures from the galaxy’s morphology, age, metallicity, star for-
mation history, merging history, and a host of other confounding
factors in addition to its redshift, thus, making photo-z estimation
a far from trivial task. There exist several techniques which are
commonly used to estimate redshifts from photometry and can be
divided into: (i) template fitting techniques (e.g., Benítez, 2000;
Bolzonella et al., 2000; Ilbert et al., 2006), and (ii) ML (or empirical)
techniques (e.g. Connolly et al., 1995; Collister and Lahav, 2004;
Wadadekar, 2005; Miles et al., 2007; O’Mill et al., 2011; Reis et al.,
2012; Krone-Martins et al., 2014). In template fitting techniques,
a set of synthetic spectra are determined from synthesised stel-
lar population models for a given set of metallicities, star forma-
tion histories and initial mass functions, among other properties.
The photo-z is calculated by determining the synthetic photom-
etry (and thus spectral template and redshift) which best fits the
photometric observations. ML techniques, on the other hand, usu-
ally require a data set with spectroscopicallymeasured redshifts to
train the chosen method.

Many studies have examined the individual advantages of each
photo-z code (for a glimpse on the diversity of existent methods,
see Hildebrandt et al., 2010; Abdalla et al., 2011; Zheng and Zhang,
2012; Sánchez et al., 2014, and references therein). Abdalla et al.
(2011) investigated the differences between five commonly used
template fitting codes and a neural network. The neural network
proved to be more reliable in redshift ranges with a higher den-
sity of training data, while the template fitting methods depended
heavily on the underlying templates. Despite these caveats, the
overall performance of all codes was, to first order, consistent and
displayed catastrophic errors ranging from5%–9%,which is consid-
ered good in terms of photo-z estimates (Abdalla et al., 2011).More
recently, methods which combine several photo-z techniques in
a Bayesian approach, coined ensemble learning, have begun to be
implementedwith thehope that they can complement eachother’s
drawbacks (Carrasco Kind and Brunner, 2014).

One of the largest practical difficulties for the current photo-z
methods is the time necessary to either fit the templates or train
the underlying ML method; on top of that, the required size of the
training set is often highly influential for empirical methods (Firth
et al., 2003). Big data catalogues expected from large sky surveys,
like the Large Synoptic Survey Telescope1 (LSST Science Collabora-
tion et al., 2009), EUCLID2 (Refregier et al., 2010) or the Wide-Field
Survey Infrared Telescope3 (Green et al., 2012), warrant the need for
fast and reliable photo-z methods that are capable of processing
such large volumes of data in minutes to days rather than years,
thereby facilitating higher level analyses and model refinements
for downstream data products.

In this work, we introduce a new technique based on robust
principal component analysis (PCA) and GLMs to estimate photo-
zs. The method runs in a matter of seconds on a single core com-
puter, even for millions of objects. In addition, we achieved very
low levels of catastrophic errors when using training sets of a

1 http://www.lsst.org/lsst.
2 http://sci.esa.int/euclid.
3 http://wfirst.gsfc.nasa.gov.

few thousands of objects. The combination of short computational
run time, moderate training set size, and small catastrophic er-
rors makes GLMs a robust and implementable technique for future
large scale surveys.

The outline of this article is as follows. In Section 2, we give a
broad overview of GLMs, in Section 3 we provide a description of
the data set utilised. The methodology implemented is outlined in
Section 4.We then present our results and comparewith the recent
literature in Section 5 and summarise our conclusions in Section 6.

2. Overview of regression methods

Before we delve into the details of GLMs and the gamma family,
wemake a brief overview of linear regression, a common tool used
within astrophysics. Afterwards, we explicitly outline the details of
GLMs with the gamma family and explain how it can be applied to
determine photo-zs for a particular data set.

2.1. Overview of linear regression

Consider a given data set containing N (distinct objects; e.g.,
galaxies),

D = {(x1, y1), (x2, y2), . . . , (xN , yN)},

where the xi are observations of the independent variable, X , and
the yi are observed values of a dependent random variable (RV),
Y , which is a function of X , Y = f (X). Traditionally, X is called the
explanatory variable and Y the response variable. The expected value
and variance of Y are denoted by E(Y ) and var(Y ), respectively. In
this context, a linear model describes the response variable (Y ) as
a linear function of the explanatory variable (X):

Y = β0 + β1X + ϵ = η + ϵ, (1)

where {β0, β1} are scalars called slope coefficients or covariates,
η = β0 + β1X is the linear component (or predictor) of this simple
model. Finally, ϵ is an error term considered to be independent and
identically distributed, ϵ ∼ N(0, σ 2).

When a standard linear regression approach is applied, the
linear predictor in Eq. (1) is assumed to fully describe the response
variable. Themeasured values are used to determine the covariates
of the linear predictor that uniquely identify a straight line through
the chosen data set minimising the error term. Having the scalar
coefficients determined, the model provides a direct relation
between X and Y , allowing one to predict the mean value of Y for
a given measurement of X .

In order to clarify the procedure described in the next subsec-
tions, we invite the reader to approach this simple linear regres-
sion problem from an alternative perspective. Consider now each
measurement, {xi, yi}, as a realisation of different variables {Xi, Yi}

from a common family of probability density functions (PDFs), but
with distinct parameters µi for each index i. The underlying PDF
driving the behaviour of the response variable (Yi) will be denoted
by f (yi; κi), where κi is the parameter vector of the PDF underlying
the ith measurement. If Yi follows a Normal PDF with mean µi and
variance σ 2

i , then

f (yi; κi) =
1

2πσ 2
i

exp

−

1
2

(yi − µi)
2

σ 2
i


, (2)

where κi = {µi, σi}. This is summarised as Yi ∼ N(µi, σi). For rea-
sons which will be clarified later, we consider σi a fixed value and,
thus, determiningµi is enough to completely characterise f (yi; κi).
In this context, we can relate themeasured xi to the expected value
of the corresponding response variable, yi = E(Yi), through the
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