
Astronomy and Computing 10 (2015) 88–98

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Client interfaces to the Virtual Observatory Registry
M. Demleitner a,∗, P. Harrison b, M. Taylor c, J. Normand d

a Unversität Heidelberg, Zentrum für Astronomie, Astronomisches Rechen-Institut, Mönchhofstraße 12-14, 69120 Heidelberg, Germany
b Jodrell Bank Centre for Astrophysics, Jodrell Bank Observatory, Macclesfield, SK11 9DL, UK
c H. H. Wills Physics Laboratory, Tyndall Avenue, University of Bristol, UK
d Observatoire de Paris VOPDC-IMCCE, 61 Av de l’Observatoire 75014 Paris, France

a r t i c l e i n f o

Article history:
Received 27 October 2014
Accepted 20 January 2015
Available online 30 January 2015

Keywords:
Virtual Observatory
Registry
Standards

a b s t r a c t

The Virtual Observatory Registry is a distributed directory of information systems and other resources
relevant to astronomy. To make it useful, facilities to query that directory must be provided to humans
and machines alike. This article reviews the development and status of such facilities, also considering
the lessons learnt from about a decade of experience with Registry interfaces. After a brief outline of the
history of the standards development, it describes the use of Registry interfaces in some popular clients as
well as dedicated UIs for interrogating the Registry. It continues with a thorough discussion of the design
of the two most recent Registry interface standards, RegTAP on the one hand and a full-text-based inter-
face on the other hand. The article finally lays out some of the less obvious conventions that emerged in
the interaction between providers of registry records and Registry users as well as remaining challenges
and current developments.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In Demleitner et al. (2014a), henceforth Paper I, we described
the design and maintenance of the Virtual Observatory (VO) Reg-
istry as a distributed information system. Conceptually, it is a
collection of, by now, about 15000 registry records. To give the
Registry’s users – astronomers, the library community, or even the
general public – access to this collection, facilities have to be pro-
vided that allow focused queries against it. This includes common
bibliographic constraints (by author, title or abstract term, year,
etc.), but also constraints specific to a registry mainly concerned
with data services (e.g., supported protocols or query parameters,
metadata of published tables). In the design of such facilities, sev-
eral challenges have to be addressed:

1. different users have very different expectations and require-
ments

2. the underlying data collection (i.e., the set of registry records)
is changing over time

3. the underlying data structure is fairly complex, and evolves
itself as new standards and techniques are introduced in the VO

∗ Corresponding author.
E-mail address:msdemlei@ari.uni-heidelberg.de (M. Demleitner).

4. as many uses require only a small subset of the types of meta-
data contained, partial resource descriptions should be retriev-
able

5. the total data set cannot efficiently be transferred to clients as
a whole

6. registry records are frequently authored by persons not entirely
familiar with the data model, resulting in inconsistent quality.

In consequence, no single user interface to the Registry can be
sufficient. Instead, the VO community designed client interfaces,
i.e., network endpoints with rigorously defined behavior and se-
mantics, designed for use by programs that then present the actual
user interfaces to Registry data.

Wewill begin this paperwith a brief review of the various client
interfaces that are or were used in the VO (Section 2). In Section 3,
we proceed to describe the use some selected clientsmake of these
facilities and theways they apply and expose information obtained
from the registry. Amajor part of the paper, Section 4, is devoted to
a thorough discussion of the Registry Relational Model (RegTAP for
short), one of the two registry interfaces currently being developed
and deployed in response to the deficiencies of previous standards.
In Section 5, the other new-generation interface is described.

While laying out some common use cases of Registry data in
Section 6 we also point out common query patterns. Section 7
concludes with some speculation about probable future develop-
ments.

http://dx.doi.org/10.1016/j.ascom.2015.01.008
2213-1337/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ascom.2015.01.008
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2015.01.008&domain=pdf
mailto:msdemlei@ari.uni-heidelberg.de
http://dx.doi.org/10.1016/j.ascom.2015.01.008


M. Demleitner et al. / Astronomy and Computing 10 (2015) 88–98 89

In the following, we refer to common Registry standard texts
by their abbreviated names as introduced in Paper I, and again the
capitalized word ‘‘Registry’’ refers to the abstract concept, while
concrete services are written in lower case (e.g., a ‘‘publishing reg-
istry’’). Concepts from VOResource and its extensions are written
in small caps.

2. History

Although only explicitly written down in 2011, the use cases
collected on the IVOAwiki (IVOA RegistryWG, 2011) outline some
of the challenges faced by the designers of the first client inter-
faces to the registry in the mid-2000s—finding tables containing
columns with certain physics, locating services implementing cer-
tain protocols, and the like.

While on the maintenance side of the registry the ecosystem
around OAI-PMH (Open Archives Initiative, 2002) provided guid-
ance for many technology choices, in developing the client inter-
faces much more new ground had to be broken. For instance, the
OPACs (Online Public Access Catalogs; see Kani-Zabihi et al. (2008)
for a treatment from about the time of RI1 design) established in
the library community, while comparable for the purpose of lo-
cating information resources, could not efficiently address the use
cases, and no broadly accepted standard for client, rather than user,
interfaces to OPACs, lent itself to adoption by the VO community.

Given that the interface to be designed was expected to be ex-
pressive enough for requests of the type ‘‘find all TAP services ex-
posing a table having some word in the description and a column
with a given UCD,1’’ it was determined fairly early on that an inter-
face based on simple, atomic parameters would not be sufficient,
and Registry information crucial to certain discovery tasks would
not be queryable through it. Client interfaces making explicit too
much of the underlying data model would also unduly restrict fu-
ture developments of that data model. Thus, at least one interface
to the Registry would have to support a full query language. Since
the Registry data model was defined in XML Schema, an obvious
choice for the query language was XQuery (Robie et al., 2014), a
language that essentially extends SQL concepts to querying XML
trees.

However, factors against the adoption of XQuery included:

• the heavy use VOResource makes of XML namespaces, which
tended to make queries hard to write by hand;

• themuch larger installed base of relational databases compared
to XQuery-capable engines (compounded by the fact that
translating XQuery to a given relational schema is hard);

• the desire to open up the full registry data model to queries
written by end users, i.e., astronomers. As it was expected
that many of these would familiarize themselves with the VO’s
SQL dialect ADQL (Astronomical Data Query Language; Ortiz
et al. (2008)), requiring yet another query language for Registry
access appeared undesirable.

With these considerations, it was decided to base the primary
Registry interface on conventional relational technology.

While the complex queries XQuery and ADQL allow were
needed for identified use cases, it was also acknowledged that
‘‘Google-like’’ searches – more or less loose matching of words in
documents modeled as bags of words – was the dominant mode of
searching for resources outside of the VO in the targeted user base.
At least if common ‘‘comfort’’ features like stemming or phrase
searches are desired, this type of search is hard or impossible
to simulate through plain ADQL given its very basic set of text

1 Unified Content Descriptors or UCDs in the VO denote physical concepts like
‘‘angular distance’’ or ‘‘radio flux’’ in a simple formal language (Derriere et al., 2004).

search capabilities. Therefore, a keyword search operation with
significant freedom for implementors was also defined.

The result of these considerations was Section 2 of RI1 (Benson
et al., 2009). It defines two required search operations Search (with
constraints in ADQL) and KeywordSearch (with operator-defined
matching of keywords against an operator-extensible minimal set
of fields) as well as an optional XQuerySearch operation. All search
operations return either identifier lists or sequences of full re-
source records in OAI-PMH style. In addition, two OAI-PMH-like
operations were defined, GetResource to obtain a resource record
from an identifier, and GetIdentity to discover metadata about the
registry service itself.

Several implementations of the standards are available; ser-
vices are provided by STScI, ESA, and AstroGrid.

As the RI1 design significantly predates the final standardiza-
tions of both ADQL (Ortiz et al., 2008) and the transport protocol for
queries and results – that was eventually defined in the TAP stan-
dard (Dowler et al., 2010) –, RI1 further defined an ad-hoc transport
based on the RPC mechanism SOAP, and it adopted ADQL at a time
when experiments were underway with passing ADQL statements
to client interfaces in parsed (XML) form. In consequence, mod-
ern TAP clients cannot use registry endpoints, and writing queries
in the aging XML serialization of ADQL became at least difficult
as software components translating SQL expressions into the XML
forms went unmaintained.

Further critique came from implementor feedback (e.g., Taylor,
2010) andwas collected togetherwith the use cases (IVOA Registry
WG, 2011). For instance, in practice the use of a restricted set of
XPath to specify constraints instead of defining an actual relational
schema lead to severe interoperability problems between different
registries, which were further exacerbated by not specifying
rules for case folding. The apparent flexibility towards registry
extensions provided by the XPath-based column references also
did not pay off as originally expected since registries still needed
to do internal mapping as registry extensions were developed. In
contrast to the (optional) XQuery interfaces, the (mandatory) ADQL
interfaces frequently lagged behind standards deployment.

In this situation, the most advanced Registry clients relied on
the optional XQuery interface or even used entirely proprietary
interfaces.

As TAP services entered the registry in the early 2010s, RI1’s
response format also became a liability. Registry records contain
table metadata, and with TAP services exposing many tables, re-
source records of severalmegabytes are not exceptional. Thismade
relatively common queries like ‘‘Retrieve basicmetadata on all TAP
services’’ expensive in terms of transfer time and processing re-
quired.

Therefore, starting in 2011, it was decided to design a new Reg-
istry interface, dubbed ‘‘RESTful’’ to contrast it from the RI1 SOAP-
based protocol. With TAP and ADQL now available, a replacement
of the RI1 Search operation was mainly a matter of designing a
schema and a mapping to this schema from VOResource. This can
be seen as creating a second serialization of an abstract data model
implicit in VOResource’s XML schema files.

The combination of a defined schema and a TAP service had a
model in ObsCore (Louys et al., 2011). The resulting new standard
(‘‘RegTAP’’), discussed in Section 4, is in the last phases of IVOApeer
review as this article is written.

A replacement for theKeywordSearch operation is also being de-
veloped. Here, the wide availability of feature-rich fulltext engines
such as Apache Lucene offers the possibility of enriching the bag-
of-words model and allows some advanced operators as well. We
will revisit this development in Section 5.



Download English Version:

https://daneshyari.com/en/article/6906202

Download Persian Version:

https://daneshyari.com/article/6906202

Daneshyari.com

https://daneshyari.com/en/article/6906202
https://daneshyari.com/article/6906202
https://daneshyari.com

