Astronomy and Computing 2 (2013) 1-10

journal homepage: www.elsevier.com/locate/ascom

Contents lists available at SciVerse ScienceDirect

Astronomy and Computing

A

Astronomy and
Computing

Full length article

Parallel astronomical data processing with Python: Recipes for

multicore machines

Navtej Singh *, Lisa-Marie Browne, Ray Butler

g

@ CrossMark

Centre for Astronomy, School of Physics, National University of Ireland - Galway, University Road, Galway, Ireland

HIGHLIGHTS

We propose three recipes for parallelizing long running tasks on multicore machines.
Native Python multiprocessing module makes it trivial to write parallel code.

Parallel performance can be optimized by carefully load balancing the workload.

The cross-platform nature of Python makes the code portable on multiple platforms.

ARTICLE INFO ABSTRACT
Arfid}’ history: High performance computing has been used in various fields of astrophysical research. But most of it
Received 25 July 2012 is implemented on massively parallel systems (supercomputers) or graphical processing unit clusters.

Accepted 30 April 2013 With the advent of multicore processors in the last decade, many serial software codes have been re-

implemented in parallel mode to utilize the full potential of these processors. In this paper, we propose
parallel processing recipes for multicore machines for astronomical data processing. The target audience
is astronomers who use Python as their preferred scripting language and who may be using PyRAF/IRAF
for data processing. Three problems of varied complexity were benchmarked on three different types
of multicore processors to demonstrate the benefits, in terms of execution time, of parallelizing data
processing tasks. The native multiprocessing module available in Python makes it a relatively trivial task
toimplement the parallel code. We have also compared the three multiprocessing approaches—Pool/Map,
Process/Queue and Parallel Python. Our test codes are freely available and can be downloaded from our

Keywords:

Astronomical data processing
Parallel computing

Multicore programming
Python multiprocessing
Parallel Python
Deconvolution

website.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In 1965, Gordon Moore predicted that the number of transistors
inintegrated circuits would double every two years (Moore, 1965).
This prediction has proved true until now, although semiconductor
experts! expect it to slow down by the end of 2013 (doubling every
3 years instead of 2). The initial emphasis was on producing single
core processors with higher processing power. But with increasing
heat dissipation problems and higher power consumption, the
focus in the last decade has shifted to multicore processors—where
each core acts as a separate processor. Each core may have lower
processing power compared to a high end single core processor,
but it provides better performance by allowing multiple threads

* Corresponding author. Tel.: +353 91 492532; fax: +353 91 494584.
E-mail addresses: n.saini1@nuigalway.ie, reachnavtej@gmail.com (N. Singh),
l.browne1@nuigalway.ie (L.-M. Browne), ray.butler@nuigalway.ie (R. Butler).
1 From the 2011 executive summary of International Technology Roadmap for
Semiconductor (http://www.itrs.net/links/2011itrs/2011Chapters/2011ExecSum.
pdf).

2213-1337/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ascom.2013.04.002

to run simultaneously, known as thread-level parallelism (TLP).
At present, dual and quad core processors are common place in
desktop and laptop machines and even in the current generation
of high end smart phones. With both Intel (Garver and Crepps,
2009) and AMD? working on next generation multicore processors,
the potential for utilizing processing power in desktop machines is
massive. However, traditional software for scientific applications
(e.g.image processing) is written for single-core Central Processing
Units (CPU) and does not harness the full computational potential
of multicore machines.

Traditionally, high performance computing (HPC) is done on su-
percomputers with a multitude of processors (and large memory).
Computer clusters using commercial off the shelf (COTS) hardware
and open source software are also being utilized (Szalay, 2011).
And recently graphical processing unit (GPU) based clusters have
been put to use for general purpose computing (Strzodka et al.,
2005; Belleman et al., 2008). The advent of multicore processors

2 advanced Micro Devices.


http://dx.doi.org/10.1016/j.ascom.2013.04.002
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ascom.2013.04.002&domain=pdf
mailto:n.saini1@nuigalway.ie
mailto:reachnavtej@gmail.com
mailto:l.browne1@nuigalway.ie
mailto:ray.butler@nuigalway.ie
http://www.itrs.net/links/2011itrs/2011Chapters/2011ExecSum.pdf
http://www.itrs.net/links/2011itrs/2011Chapters/2011ExecSum.pdf
http://www.itrs.net/links/2011itrs/2011Chapters/2011ExecSum.pdf
http://www.itrs.net/links/2011itrs/2011Chapters/2011ExecSum.pdf
http://www.itrs.net/links/2011itrs/2011Chapters/2011ExecSum.pdf
http://www.itrs.net/links/2011itrs/2011Chapters/2011ExecSum.pdf
http://www.itrs.net/links/2011itrs/2011Chapters/2011ExecSum.pdf
http://www.itrs.net/links/2011itrs/2011Chapters/2011ExecSum.pdf
http://www.itrs.net/links/2011itrs/2011Chapters/2011ExecSum.pdf
http://dx.doi.org/10.1016/j.ascom.2013.04.002

2 N. Singh et al. / Astronomy and Computing 2 (2013) 1-10

provides a unique opportunity to move parallel computing to desk-
tops and laptops, at least for simple tasks. In addition to hardware,
one also needs unique software protocols and tools for parallel pro-
cessing. The two most popular parallel processing protocols are
Message Passing Interface (MPI) and OpenMP. MPI is used on ma-
chines with distributed memory (for example—clusters) whereas
OpenMP is geared towards shared memory systems.

Parallel computing has been used in different sub-fields of as-
trophysical research. Physical modeling and computationally in-
tensive simulation code have been ported to supercomputers.
Examples include N-Body simulation of massive star and galaxy
clusters (Makino et al., 1997), radiative transfer (Robitaille, 2011),
plasma simulation around pulsars, galaxy formation and mergers,
cosmology, etc. But most of the astronomical image processing and
general time consuming data processing and analysis tasks are still
run in serial mode. One of the reasons for this is the intrinsic and
perceived complexity connected with writing and executing par-
allel code. Another reason may be that day to day astronomical
data processing tasks do not take an extremely long time to exe-
cute. Irrespective of this, one can find a few parallel modules devel-
oped for astronomical image processing. The cosmic ray removal
module CRBLASTER (Mighell, 2010) is written in C and based on
the MPI protocol, and can be executed on supercomputers or clus-
ter computers (as well as on single multicore machines). For co-
addition of images, Wiley et al. (2011) proposed software based
on the MapReduce? algorithm, which is geared towards processing
terabytes of data (for example—data generated by big sky surveys
like the SDSS*) using massively parallel systems.

In this paper, we have explored the other end of the spectrum—
single multicore machines. We are proposing a few recipes for
utilizing multicore machines for parallel computation, to perform
faster execution of astronomical tasks. Our work is targeted at
astronomers who are using Python as their preferred scripting lan-
guage and may be using PyRAF° or IRAF® for image/data process-
ing and analysis. The idea is to make the transition from serial to
parallel processing as simple as possible for astronomers who do
not have experience in high performance computing. Simple IRAF
tasks can be re-written in Python to use parallel processing, but re-
writing the more lengthy tasks may not be straightforward. There-
fore, instead of re-writing the existing optimized serial tasks, we
can use the Python multiprocessing modules to parallelize itera-
tive processes.

In Section 2, we introduce the concept of parallel data process-
ing and the various options available. Python multiprocessing in
discussed in Section 3 with emphasis on native parallel processing
implementation. Three different astronomical data processing ex-
amples are benchmarked in Section 4. In Section 5, we discuss load
balancing, scalability, and portability of the parallel Python code.
Final conclusions are drawn in Section 6.

2. Parallel data processing

Processors execute instructions sequentially and therefore,
from the initial days of computers to the present, most of the ap-
plications have been written as serial code. Generally coding and
debugging of serial code is much simpler than parallel code. How-
ever, debugging is an issue only for parallel programs where many

3 Model to process large datasets on a distributed cluster of computers.

4 5pss: Sloan Digital Sky Survey [http://www.sdss.org/ |.

5 PyRAF is a product of the Space Telescope Science Institute, which is operated
by AURA for NASA.

6 IRAF s distributed by the National Optical Astronomy Observatories, which are
operated by the Association of Universities for Research in Astronomy, Inc., under
cooperative agreement with the National Science Foundation.

processes depend on results from other processes—whereas it is
not an issue while processing large datasets in parallel. Moving to
parallel coding not only requires new hardware and software tools,
but also a new way of tackling the problem in hand. To run a pro-
gram in parallel, one needs multiple processors/cores or comput-
ing nodes.” The first question one asks is how to divide the problem
so as to run each sub-task in parallel.

Generally speaking, parallelization can be achieved using either
task parallelization or data parallelization. In task parallelism, each
computing node runs the same or different code in parallel.
Whereas, in data parallelism, the input data is divided across the
computing nodes and the same code processes the data elements
in parallel. Data parallelism is simpler to implement, as well as
being the more appropriate approach in most astronomical data
processing applications, and this paper deals only with it.

Considering a system with N processors or computing nodes,
the speedup that can be achieved (compared to 1 processor) can
be given as:

T
s=-1, (1)
Ty

where T; and Ty are the code runtime for one and N processors
respectively. Ty depends not only on the number of computing
nodes but also on the fraction of code that is serial. The total
runtime of the parallel code using N processors can be expressed
using Amdahl’s law (Amdahl, 1967):

Tp
In=Ts + N + Tsync (2)

where Ts is the execution time of the serial fraction of the code,
Tp is the runtime of code that can be parallelized, and Tyn is the
time for synchronization (I/O operations, etc.). The efficiency of
the parallel code execution depends a lot on how optimized the
code is, i.e. the lower the fraction of serial code, the better. If we
ignore synchronization time, theoretically unlimited speedup can
be achieved as N — oo by converting the serial code to completely
parallel code. More realistically, Tsync can be modeled as K * In(N),
where N is number of processors and K is a synchronization
constant (Gove, 2010). This means that at a particular process
count, the performance gain over serial code will start decreasing.
Minimization of Eq. (2) gives:

= (3)

This means that the value of N for which the parallel code
scales is directly proportional to the fraction of code that is parallel
and inversely proportional to synchronization. In other words,
by keeping N constant, one can achieve better performance by
either increasing the fraction of parallel code or decreasing the
synchronization time, or both.

We have used multiprocessing instead of multi-threading to
achieve parallelism. There is a very basic difference between
threads and processes. Threads are code segments that can be
scheduled by the operating system. On single processor machines,
the operating system gives the illusion of running multiple threads
in parallel but in actuality it switches between the threads quickly
(time division multiplexing). But in the case of multicore machines,
threads run simultaneously on separate cores. Multiple processes
are different from multiple threads in the sense that they have sep-
arate memory and state from the master process that invokes them
(multiple threads use the same state and memory).

The most popular languages for parallel computing are C,
C++ and FORTRAN. MPI as well as OpenMP protocols have been

7 The terms processors and computing nodes will be used interchangeably in the
rest of the paper.


http://www.sdss.org/

Download English Version:

https://daneshyari.com/en/article/6906228

Download Persian Version:

https://daneshyari.com/article/6906228

Daneshyari.com


https://daneshyari.com/en/article/6906228
https://daneshyari.com/article/6906228
https://daneshyari.com

