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a b s t r a c t

Detection of a signal hidden by noise within a time series is an important problem in many astronomical
searches, i.e. for light curves containing the contributions of periodic/semi-periodic components due to
rotating objects and all other astrophysical time-dependent phenomena. One of the most popular tools
for use in such studies is the periodogram, whose use in an astronomical context is often not trivial.
The optimal statistical properties of the periodogram are lost in the case of irregular sampling of signals,
which is a common situation in astronomical experiments. Parts of these properties are recovered by the
Lomb–Scargle (LS) technique, but at the price of theoretical difficulties, that can make its use unclear, and
of algorithms that require the development of dedicated software if a fast implementation is necessary.
Such problemswould be irrelevant if the LS periodogramcould be used to significantly improve the results
obtained by approximated but simpler techniques. In this work we show that in many astronomical
applications, simpler techniques provide results similar to those obtainable with the LS periodogram. The
meaning of the Nyquist frequency is also discussed in the case of irregular sampling.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The search for characteristic frequencies in astrophysical
phenomena requires a careful analysis of the datawith appropriate
statistical tools. Given the simplicity of its use and the wide
availability of efficient related software, one of the most popular
techniques for looking for periodicities within a time series is the
periodogram technique. In astronomical applications, however,
the use of this technique is not trivial. In fact, this tool exhibits
its optimal properties only in the case of signals sampled on a
regular time grid, a common situation in engineering applications
but not always in astronomical experiments. The analysis of a
periodogram in the case of irregular sampling is often limited by
the possibilities for fully fixing its statistical properties. This is an
old problem (see e.g. Gottlieb et al., 1975) and there have been
many attempts to solve it. A partial solution has been found in
the Lomb–Scargle (LS) approach (Lomb, 1976; Scargle, 1982), but
at the price of theoretical difficulties that make its use unclear
and, if a fast implementation is needed (e.g. in the case of very
long time series), the necessity of dedicated software. Of course,
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this would not constitute a relevant issue if the LS periodogram
could be used to notably improve the results obtainable by the
statistical analysis of a time series. In this paper we argue that in
astronomical applications, often this is not the case. We show how
the negligible improvements obtained with LS are offset by the
ease of interpretation and clarity of the results provided by simpler
techniques, which do not demand high computing power and/or
complicated algorithms.

In Section 2 the statistical analysis of sampled signals is ad-
dressed in the case of a regular sampling, where the mathematical
notation and formalismare also outlined. The problems and advan-
tages of an irregular sampling are analyzed in Section 3. The real
advantage of the LS periodogramwith respect to an approximated
but simpler technique is considered in Section 4 on the basis of
theoretical arguments as well as numerical experiments based on
synthetic data and an experimental time series. Finally, Section 5
derives our conclusions.

2. Statistical analysis of regularly sampled signals

If a signal x(t) is sampled on a regular time grid with a con-
stant time step∆t , a time series {xj}N−1

j=0 ≡ (x0, x1, . . . , xN−1) is ob-
tained1. Often themain problem is testingwhether x(t) is due only

1 Typically it is assumed that ∆t = 1.
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to a noise n(t) or whether some other component s(t) is present,
i.e. xj = sj + nj. The most popular approach consists of comput-
ing the periodogram {pk}N−1

k=0 for a set of N equispaced frequencies
{fk}N−1

k=0 ≡ {k/N}: pk =
1
N |xk|2 with the discrete Fourier transform

(DFT) of {xj} being

xk =

N−1
j=0

xje−i2πkj/N , k = 0, 1, . . . ,N − 1; (1)

and {fk} being the Fourier frequencies. The original time series {xj}
can be recovered from {xk} via
xj =

1
N

N−1
k=0

xkei2πkj/N , j = 0, 1, . . . ,N − 1. (2)

In the case where {xj} is only noise with {nj} a zero-mean, Gaus-
sian, white-noise stationary process with standard deviation σn,
from Eq. (1) it can be readily verified that, independently of k,pk/σ 2

n is given by the sum of two squared independent, zero-mean,
unit-variance, Gaussian random quantities. As a consequence, the
corresponding probability density function (PDF) is the exponential
distribution. Moreover, whenever k ≠ k′ with k, k′

= 0, 1, . . . ,
N/2, pk is independent of pk′ . Hence, the probability α that at least
one of the pk is expected to exceed a level LFa is

α = 1 −


1 − e−pk/σ 2

n
N∗

. (3)

Through this quantity it is possible to fix a detection threshold LFa,

LFa = −σ 2
n ln


1 − (1 − α)1/N

∗

, (4)

corresponding to the level that one or more peaks due to the noise
would exceed with a pre-fixed probability α when a number N∗ of
(statistically independent) frequencies are inspected. Threshold LFa
is called the level of false alarm.

For a periodic component with amplitude A, phase φl and fre-
quency fl (in units of 1/∆t) in the set of the Fourier frequencies
{fk}, sj = A sin(2π fltj+φl), the periodogramwill show a prominent
peak at k = l. Indeed, sincexN−k+1 is the complex conjugate ofxk,
then cos[2π(N − k+ 1)j] = cos[2πkj] and sin[2π(N − k+ 1)j] =

− sin[2πkj]. Hence, Eq. (2) can be written in the form (Chu, 2008)

xj =
1
N

N−1
k=0

ak cos
2πkj
N

+ bk sin
2πkj
N

, (5)

where

ak =

N−1
j=0

xj cos
2πkj
N

; (6)

bk =

N−1
j=0

xj sin
2πkj
N

, (7)

or

ak =
xk +xN−k+1

2
; (8)

bk = i
xk −xN−k+1

2
. (9)

Now, since

sj = al cos
2π lj
N

+ bl sin
2π lj
N

, (10)

only the coefficientsxl andxN−l and hence onlypl = (a2l + b2l )/N
will be different from zero. More generally, if xj = A sin(2π f ∗

l tj +

φ) + nj, with f ∗

l close but not identical to the Fourier frequency fl,
the periodogram takes the form of a squared ‘‘sinc’’ function cen-
tered at f ∗

l . Also in this case, it is expected that pl > LFa for small
values of α (typically 0.05 or 0.01). If s(t) is semi-periodic or even
non-periodic, the situation is more complicated since more peaks
are expected, but the basic idea does not change.

Regular sampling has many advantages, among them:

• The sine and cosinemodes corresponding to the Fourier frequen-
cies constitute an orthonormal basis for signal {xj}. This makes
operations such as noise filtering, separation and/or detection
of components of interest easier.

• The spectrogram can be shown to derive from the least-squares
fit of model (5) to the observed signal (see e.g. see Vio et al.,
2010). This provides a physical interpretation of the quantity pk
as energy associated with the component at frequency fk.

• Under the pure noise hypothesis, xj = nj and, independently
of k, ak and bk are uncorrelated (independent) Gaussian quanti-
ties. As a consequence pk contains all the available information.
In otherwords, the use of the joint distribution of ak and bk does
not provide any advantage with respect to the use of pk. More-
over, the quantities {pk}

N/2
k=0 are mutually independent and have

a known PDF. All of these facts permit the development of sim-
ple and effective detection techniques.

• Quite efficient algorithms are available for the computation of
{pk}.

At the same time, however, it is necessary to stress that:

• The Fourier frequencies have no particular physical meaning.
They constitute kinds of natural frequencies that, however, are
intrinsic to the sampling characteristics and not to the signal
under analysis. This implies that the frequency of interest could
not belong to such a set.

• If xj contains a sinusoidal componentwith frequency fu > fNy =

0.5 (in units of 1/∆t), the periodogram will show a peak in
correspondence to a frequency f = mod (fu, 2π) < fNy.2 This
puts an upper limit fNy, the so called Nyquist frequency, on the
maximal frequency that can be detected in a time series.

In conclusion, a regular sampling simplifies the analysis of the
data as well as the development of efficient algorithms. However,
especially in the context of exploratory data analysis, it suffers of
some annoying limitations.

3. Periodogram analysis of irregularly sampled signals

3.1. Statistical issues

In astronomy, often the experimental conditions do not permit
a regular sampling of signals and this leads to the following. First,
it is no longer possible to define a set of natural frequencies
(such as the Fourier frequencies) for which to compute the
periodogram. Hence, there is no reason for the number N of
frequencies to be equal to the number M of the sampling time
instants t0, t1, . . . , tM−1. Therefore, we write the transformation
corresponding to that given by Eq. (1) in the general form

xf =

M−1
j=0

xtje
−i2π ftj , (11)

where, without loss of generality, we have t1 = 0. The spectrogram
is still defined as pf =

xf 2 /M . Similarly, Eqs. (8)–(9) become

2 The function z = mod(x, y) provides the remainder z from the division of x by
y.
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