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a b s t r a c t

In this paper, several numerical models have been presented for predicting the water content of natural gases

in equilibrium with liquid water. Machine learning approaches including multilayer perceptron (MLP) neural

network, radial basis function (RBF) neural network, and least squares support vector machine (LSSVM)

algorithm have been utilized for precise determination of water content of natural gases.

The presented models work for pressures up to 69 MPa and temperatures between 298.15 and 450.15 K as well

as acid gas mole fractions up to 0.4. With accordance to the error analysis results it was found that the proposed

LSSVM, RBF, and MLP models reproduce targets with the average absolute relative deviations (%AARD) being

less than 2.8%, 4.1%, and 7.7%, respectively. Coefficients of determination values of the developed models are

found to be greater than 0.99, illustrating good association of the predictions with corresponding reported

data in the literature.

© 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Natural gas is very important and clean source of energy. In view

of particular properties of water, calculating the natural gas water

content is crucial for proper handling of natural gas production and

processing operations [1]. Accurate prediction of natural gas water

content leads to safe and economic design of natural gas equipment,

gas processing facilities and pipelines [1–4].

Available methods for estimation of natural gas water content

can be categorized in two main groups: thermodynamic approaches,

and empirical correlations. By applying the Raoult’s law to water, the

simplest thermodynamic model known as ideal model is written as

follows:

yw = xwPsat

P
(1)

Abbreviations: %AARD, average absolute relative deviation percent; ANN, artificial

neural network; CSA, coupled simulating annealing; LSSVM, least squares support vec-

tor machine; MPE, mean percentage error; MSE, mean squared error; MLP, multilayer

perceptron; RBF, radial basis function.
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where yw and xw are mole fractions of water in vapor and liquid

phase, respectively; P is absolute pressure of the system, and Psat

is water vapor pressure at system temperature. Based on this model

Bukacek [5] and Mohammadi et al. [6] proposed separate correlations

to estimate the water content of sweet natural gases. Bukacek [5]

correlation is applicable at temperatures higher than 288.15 K [7,8],

and proposed correlation of Mohammadi et al. [6] is developed in

the temperature range of 273.15 K and 477.59 K and pressures up to

14.40 MPa.

More complicated thermodynamic models are based on fugacity

uniformity of each component in all phases of the system. The meth-

ods of Erbar et al. [9], Li and Firoozabadi [10], Chapoy et al. [11], Zirrahi

et al. [4], and Chapoy [12] are such models. The presented method by

Chapoy [12], however, is derived by employing some assumptions.

Hence, this method is a semi-empirical approach for predicting the

natural gas water content. By using the equation of Chapoy [12], the

water mole fraction in the gas phase is estimated as follows [1]:

yw =
(

Psat

ϕwP

)
exp

(
υL

w

(
P − Psat

)
RT

)
(2)

where υL
w is water molar volume, and ϕw is fugacity coefficient

of water in the gas phase. υL
w and Psat are estimated by the
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Nomenclature

b = bias term

B = temperature dependent function

bi = constant

C = temperature dependent function

ci = constant

K(xi, xj)= kernel function

L = Lagrangian

P = pressure, MPa

Psat = water vapor pressure at system temperature

IN= N × N identity matrix

w = weight vector

1v= [1; . . . ; 1]

AT= transpose of matrix A

xw = water mole fraction in liquid phase

yw = water mole fraction in vapor phase

d = the polynomial degree

n = number of data points

T = temperature, K

R = universal gas constant

Greek letters

ϕw = fugacity coefficient of water in the gas phase

υL
w = water molar volume

� = kernel matrix

� = map from input space into feature space

γ = regularization constant

αi = Lagrange multipliers

σ = width of kernel function

relationships introduced by Daubert and Danner [13] and McCain

[14], respectively [1]. Chapoy [12] proposed the following equation

to estimate ϕw:

ϕw = exp(BP + CP2) (3)

where B and C are temperature dependent functions as below [1]:

B = b1 + b2

T
(4)

C = c1 + c2

T
(5)

where bi and ci are coefficients.

In addition to the thermodynamic and empirical methods, some

charts have been provided in the literature [15] for estimation of nat-

ural gas water content. In many standards, McKetta and Wehe [15]

chart is recommended for estimation of sweet natural gas water con-

tent [6]. This chart has been regenerated in many publications [7] like

Gas Processors and Suppliers Association (GPSA) Engineering Book

[16]. Since in most cases graphical based calculations need an inter-

polation, they are usually time consuming and tedious. Regarding this

fact many authors such as Kobayashi et al. [17], Caroll et al. [7], and

Bahadori et al. [18] tried to develop a correlation representing the

curves plotted in the McKetta and Wehe [15] chart. Kobayashi et al.

[17] correlation is quite intricate and is applicable for pressures up to

14 MPa.

Thus far, the estimation of natural gas moisture content by use

of artificial neural networks has not been explored to a wide range.

Although, there have been some attempts for estimating the water

content of natural gases, for instance, Mohammadi and Richon [19]

applied artificial neural network to predict the water content of nat-

ural gases based on 143 experimental data points. The model was

acceptable for pressures up to 13.81 MPa. Shirvany et al. [20] made

the same attempt for estimation of sour natural gas water content

Fig. 1. Schematic representation of MLP neural network.

based on 136 experimental data points. The model was applicable for

pressures up to 24.13 MPa.

In this study, several intelligent models have been presented for

the application of interest. To develop neural-based models, artifi-

cial neural networks (ANNs) including RBF-ANN and MLP-ANN have

been employed. The two-parameter model has been developed using

special kind of SVMs namely LSSVM algorithm. The required data for

modeling purposes have been gathered from GPSA engineering data

book [16].

2. Artificial neural networks

2.1. Multilayer perceptron networks

Multilayer perceptron (MLP) neural networks comprise of three

various types of layers, including input layer, hidden layer(s), and

output layer (Fig. 1). A single MLP might have one or more hidden

layer. Each layer is composed of some neurons. The number of neurons

in the input and output layers is corresponded to number of input

and output data, respectively. The number of hidden layers and also

neurons in them is optional and can be defined either intelligently

or by trial and error to seize the best efficiency. Minimum square

error (MSE) implies the performance of the proposed network. In

such networks, the error is back propagated through the network

and the weights and biases are optimized through some iteration

called epochs. The number of epochs should be such that the network

neither undertrain nor overtrain. In the former, the network does not

have sufficient time to complete the learning process. In the latter, the

network does not learn but memorizes. This results the inadequate

capability of network in estimation of test data set [21].

2.2. Radial basis function networks

Both MLP and radial basis function (RBF) networks have identi-

cal applications but distinct internal calculation structures. The most

prime advantage of RBF networks is simple design that it has just

three layers. They have the ability of sound generalization, high tol-

erance of input noises and ability of online learning [22]. From the

generalization point of view, RBF networks are capable of responding

very well to patterns that were not applied for training [23].

RBF networks are neural networks on the basis of localized basis

functions and iterative function approximation [24]. The RBF net-

works utilize supervise training technique and are a type of feed-

forward neural networks [25]. The RBF network is a universal ap-

proximator, with a solid foundation in the conventional approxima-

tion theory [26]. RBF has a comparatively simpler structure than MLP

which enjoys much faster training process. These features make RBF

a favorite alternative to the MLP. The origin of RBF is in performing

exact interpolation of a set of data points in a multidimensional space

[27]. It is proved that RBF networks can be used by MLP networks with

increased input dimensions [28]. The RBF architecture is analogous to
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