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a b s t r a c t

Natural brines occur underground or in salt lakes are commercially main sources of common salt and other

salts, such as sulfates and chlorides of potassium and magnesium. This paper reports the implementation

of a novel least square support vector machine (LS-SVM) algorithm for the development of improved mod-

els capable of predicting the properties of reservoir brine properties i.e., liquid saturation vapor pressure,

density and enthalpy. The validity of the presented models was evaluated by using several statistical pa-

rameters. The predictions of the developed models for determining the liquid saturation vapor pressure,

density and enthalpy were in excellent agreement with the reported data with an average absolute rela-

tive deviation (AARD) of %0.069, %0.033, %0.072, respectively and coefficient of determination values (R2)

0.999. According to the results of comparative studies, the developed models are more robust, reliable

and efficient for calculating properties of oil field formation water during crude oil production than other

techniques.

© 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Almost all hydrocarbon reservoirs are bounded by and in commu-

nication with water-bearing rock called aquifers [1]. Aquifer drive or

natural water drive is one of the most effective oil production driving

mechanisms, either as an edge water-drive or bottom water-drive

[1]. Brine production increases with decreasing reservoir pressure

during the production life [2]. The associated cost of handling this

water production is forecasted to exceed several billion dollars per

year [2]. In the USA, the water produced in oil production comprised

98% of all waste produced by the exploration and production (E&P)

industry.

In other words, an average of ten barrels of salt water is produced

for every barrel of oil [3]. Even with the best field management meth-

ods, brine production may eventually increase to a point that will

represent more than 90% of the liquid volume brought to the surface

[4]. The production of wet crude in many oil fields has been a growing

field concern and the production of wet crude adversely affects the

quality of the oil produced. A number of wells have had to be shut in

due to a lack of adequate treatment facilities [5]. Understanding and
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dealing with these costs needs precise knowledge of the PVT proper-

ties of formation water. The nature, and physico-chemical properties

of the produced formation water have a direct influence on the well

productivity, degree of depletion and oil recovery efficiency and high-

light the need to understand the characteristics of water associated

with oil [6]. In addition, PVT properties of oilfield brines are used,

either directly or indirectly, in many petroleum engineering calcula-

tions. Thus, the errors in estimation of PVT properties will propagate

throughout estimates of other computations. Hence, it is absolutely

necessary that the predictions for PVT properties be as accurate as

possible. Over the last four decades, many experimental studies of

the behavior of systems comprising salts in water have been pub-

lished in the physical chemistry literature. Generally, a number of

technical papers have been reported to address the various technical

and practical points on formation water issues [7–9]. PVT properties

of the formation water can be obtained either by conducting a lab-

oratory study on reservoir fluid samples or by the use of predictive

models. However, experimental determination of these properties

is relatively expensive and time consuming [10]. Therefore, in the

absence of experimental facilities, the characteristics are estimated

from the correlations and soft computing techniques [11–16]. Based

on the success of applying support vector machine (SVM) algorithm

to solve a range of engineering problems, we are pursuing contin-

ued development and application of SVM for PVT modeling. On the

other hand, to the best of our knowledge, there are no reports of
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Nomenclature

AT transpose of matrix A

AARD average absolute relative deviation

ANN artificial neural network

ARD average relative deviation

b bias term

H enthalpy (kJ/kg)

IN N × N identity matrix

K(xi, xj) kernel function

L Lagrangian

LS-SVM least square support vector machine

P vapor pressure (kPa)

RMSE root mean squared error

T temperature (K)

w weight vector

αi Lagrange multipliers

� map from input space into feature space

γ regularization constant

� kernel matrix

ρ density (kg/m3)

σ width of the RBF kernel

ψ salt concentration (mass fraction)

modeling the formation water PVT properties using the SVM ap-

proach. Therefore, the aim of this study was to propose computer

based models for accurate calculations of the reservoir brine prop-

erties i.e., enthalpy, density, and liquid vapor pressure. Highlighting

the contribution of the paper, our developed LS-SVM model covers

a wide range of input PVT data. Moreover, comparative studies are

conducted between the developed models in this study and the exist-

ing correlations/models. The importance level of the input variables

was also determined by using parametric sensitivity analysis tech-

nique. It is important to note that much higher accuracy in predicting

brine PVT properties is attained while employing the developed in-

telligent model compared to the predictive models which would be

an asset for engineering and research activities in this area. The re-

minder of this paper is organized as follows; Section 2 reports the

background and computational procedure of the LS-SVM. Section 3,

evaluates the adequacy and superiority of the proposed model by

statistical and graphical error analysis. Section 4 summarizes the im-

pacts of the factors on the reservoir brine PVT properties by apply-

ing a sensitivity analysis. Section 5 reports the conclusions of the

work.

2. Methodology

2.1. Backgrounds of LS-SVM modeling

The support vector machine is a supervised learning technique

from the field of machine learning applicable to both classification

and regression analysis [17–23]. On the other hand, one of the major

drawbacks of the SVM is the necessity to solve a large-scale quadratic

programming problem [24]. This disadvantage has been overcome

by a modification to the traditional SVM called least-squares SVM

(LS-SVM), which solves linear equations (linear programming), in-

stead of quadratic programming problems to reduce the complexity

of optimization process [25–27]. Considering the problem of approxi-

mating a given dataset {(x1, y1), (x2, y2), . . . , (xN, yN)}with a nonlinear

function:

f (x) = 〈w,�(x)〉 + b (1)

where 〈., .〉 represents dot product; �(x) represents the nonlin-

ear function that performs regression; b and w are bias terms and

Table 1

Operating ranges of gathered database for PVT properties of oilfield brine.

Variable Minimum Maximum Mean

Temperature (K) 311.515 589.15 449.9

Salt concentration (mass fraction) 0.05 0.25 0.15

Vapor pressure (kPa) 111.0 12461.0 3530.3

Enthalpy (kJ/kg) 151.85 1375.06 674.1

Density (kg/m3) 750.0 1199.0 1000.5

Table 2

Optimized parameters of the developed LS-SVM based models for

determination of reservoir brine PVT properties.

γ σ 2

Saturated liquid enthalpy 7.617E+6 1.776

Saturated liquid density 7.432E+9 3.968

Saturated vapour pressure 2.5076E+6 0.3259

Table 3

The statistical parameters of the developed model for prediction of reser-

voir brine saturated liquid enthalpy.

Parameter

Training set

R2 0.9999

Average relative deviation (%)a −7.4E−4

Average absolute relative deviation (%)b 0.052

Root mean square errorc 0.418

Number of data samples 33

Validation set

R2 0.9999

Average relative deviation (%) 5.9E−4

Average absolute relative deviation (%) 0.103

Root mean square error 0.742

Number of data samples 11

Test set

R2 0.9999

Average relative deviation (%) 0.012

Average absolute relative deviation (%) 0.111

Root mean square error 0.709

Number of data samples 11

Total

R2 0.9999

Average relative deviation (%) 2.55E−3

Average absolute relative deviation (%) 0.074

Root mean square error 0.561

Number of data samples 55
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weight vector, respectively. In LS-SVM for function estimation, the

optimization problem is formulated as [24,28]:

min
w,b,e

J(w, e) = 1

2
‖w‖2 + 1

2
γ

N∑
k=1

e2
k (2)

s.t. yk = ek + 〈w,�(xk)〉 + b k = 1, . . . , N (3)

where, ek ∈ R are error variables; and γ ≥ 0 is a regularization

constant. To solve this optimization problem, Lagrange function is

constructed as [24,28]:

LLS−SVM = 1

2
‖w‖2 + 1

2
γ

N∑
k=1

e2
k −

N∑
k=1

αk {ek + 〈w,�(xk)〉 + b − yk}
(4)

where, αk ∈ R are Lagrange multipliers. The solution of Eq. (4) can

be determined by partially differentiating with respect to w, b, ek
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