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a b s t r a c t

A flow graph theory is a method for finding the analytical solution of linear differential equations which arise

in chemical kinetics through Cramer’s method of determinants. This article presents the applicability of flow

graph theory for deriving the analytical solution of kinetic equations which arise in modeling of complex re-

action system such as hydrocracking of heavy oils. A discrete lumped model for hydrocracking of heavy oils

was developed and analytical solution for the governing model equations was derived using Laplace trans-

forms earlier. In this work, a new method involving flow graph theory was used instead of Laplace transforms.

The kinetic equations which describe the performance of a hydrocracker are governed by linear differential

equations and a general analytical solution was successfully derived using flow graph theory. The analytical

solution obtained through flow graph theory is similar with the reported solution using Laplace transforms

for the kinetic equations of hydrocracking of heavy oils. Furthermore, the relative errors between the ex-

perimental data and model calculations using analytical solution of the three lump hydrocracker model are

reasonable except for few data points.

© 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

A flow graph is a pictorial representation of reaction mechanisms

involved in a chemically reacting system [1,2]. This approach deter-

mines the analytical solution of linear differential equations using

Cramer’s method of determinants [1–4]. In chemical kinetics, the lin-

ear differential equations arise as a result of mass balances of first

order reactions which occur in either a batch reactor or an ideal plug

flow reactor [3,4]. Analytical solution for the linear differential equa-

tions can be conveniently represented as a constant multiplied with

a time dependent exponential function [1–4]. In flow graph theory,

the constant is determined as ratio of determinants of the forma-

tion and consumption flow graphs. The consumption flow graph can

be formulated on the basis of reaction stoichiometry. The formation

flow graph is deduced from consumption flow graph by including the

feed source terms and neglecting the final product with zero kinetic

constant of the target product. This approach eliminates the usage of

classical integration, Laplace transforms, and eigenvalue method for

finding analytical solution of linear differential equations which arise

in chemical kinetics and engineering [2,4].

A general analytical solution for the first order monomolecular ir-

reversible reactions which occur in a batch reactor was derived us-

ing flow graph theory by Bhusare and Balasubramanian [3]. Recently,
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Nurul Amira and Balasubramanian [4] applied the flow graph the-

ory for finding analytical solution of kinetic equations for the two

and three species reversible reactions. In the present work, it was

decided to demonstrate the applicability of the flow graph theory

approach for finding analytical solution of kinetic equations for the

cracking reactions. The illustrative example considered here is a dis-

crete lumped model for hydrocracking of heavy petroleum fractions

[5,6]. In hydrocracking, the high boiling point petroleum fractions

such as vacuum gas oil or vacuum residue undergo carbon–carbon

bond cleavage reactions and produce low boiling point petroleum

fractions such as liquefied petroleum gas, naphtha and diesel in the

presence of hydrogen gas over a bifunctional solid acid catalyst [7].

The kinetic equations for hydrocracking of heavy petroleum fractions

were developed by assuming binary cracking kinetics. Earlier, Krishna

and Balasubramanian [6] developed a general discrete lumped model

for hydrocracking of heavy oils using true boiling point of the hydro-

carbons as the basis. In this model, the cracking reactions which oc-

cur within the lumps are also considered along with the cracking re-

actions between the lumps. A general analytical solution of kinetic

equations for hydrocracking of heavy oils was derived using Laplace

transforms [6].

A flow graph theory is a recently emerging method for finding an-

alytical solution of linear differential equations which arise in chem-

ical kinetics. This approach is not applied for finding solution of ki-

netic equations of cracking kinetics which arises in hydrocracking of

heavy oils. Therefore, this article presents the applicability of flow
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A B C

Fig. 1. A flow graph for the reaction A
kBA−→ B

kCB−→ C.

graph theory for finding solution of kinetic equations for hydrocrack-

ing of heavy oils.

2. Basis of flow graph theory

A flow graph in a signal system represents a network in which

nodes are connected with directed edges. Each node in a signal flow

graph indicates a system variable and each edge connecting two

nodes acts as a signal multiplier. The direction of signal flow is repre-

sented by placing an arrow on the edge and transmittance of signal

flow is indicated along the edge. The signal flow graph depicts how

signals are transmitted from one system to another and provides the

relationship between the systems.

In kinetics, a node represents a chemical component undergoing

a structural transformation. An edge is a directed line segment join-

ing two nodes. Weighting of an edge is a real gain between nodes and

indicates the kinetic constant of a reaction. The reactant and product

are represented as an input and output nodes, respectively. The input

and output nodes have only outgoing and incoming edges, respec-

tively. Furthermore, the mixed node has both outgoing and incoming

edges.

The concept of flow graph in chemical kinetics is illustrated with

the following example. The schematic representation of flow graph

for the series reaction is depicted in Fig. 1. The label A in the flow

graph represents a reactant and is an input node as a result of having

only outgoing edge. The labels pB and pC denote the output nodes

because of having only the incoming edges. Furthermore, the labels

B and C are the mixed nodes, and have both incoming and outgoing

edges. The transmittance shown in Fig. 1 is a kinetic constant, and the

symbols kBA and kCB denote the kinetic constants for the nodes A and

B, respectively. The detailed description for the flow graph theory in

kinetics can be found elsewhere [1–4].

3. Illustrative example

In the following, the derivation of analytical solution for the ki-

netic equations of hydrocracking of heavy oils through flow graph

theory approach is presented.

In hydrocracking, the discrete lumps are classified on the basis

of true boiling point of the hydrocarbons. The typical lumps classi-

fication for hydrocracking of heavy oils is: (i) liquefied petroleum gas

(< 315 K), naphtha (315–425 K), middle distillates (425–620 K) and

residue (>620 K). In kinetic modeling, it was assumed that a molecule

in the heavy lump undergoes a binary cracking reaction and produces

two products which may lie either in the light lump or within a re-

actant lump [6]. Therefore, a general stoichiometry of the cracking

reactions can be represented as

Lr

ki, j,r−−→ Li + L j (1)

where, r varies from NL to 1, j vary from 1 to r and i vary from 1 to j,

NL is number of lumps considered, Lr is label of the lump r, and ki,j,r is

kinetic constant for binary cracking of hydrocarbons in the reactant

lump r into two products which lie in the product lumps i and j.

The kinetic equations for hydrocracking of heavy oils [6] were de-

veloped by assuming first order irreversible cracking kinetics and are

given by

dwLr

dt
= 2

NL∑
j=r

j∑
i=1

δr,i, j�r,i, jkr,i, jwLj
−

r∑
i=1

r∑
j=1

�i, j,rki, j,rwLr
(2)

Eq. (2) can also be applied for determining the product distribu-

tion in thermal cracking of heavy petroleum fractions [8].

In Eq. (2), �r,i, j = 4i j/r2(r + 1)2is exponential form of stoichio-

metric kernel for the distribution of products in the lumps r and i from

the reactant lump j by virtue of a cracking reaction. The compensation

factorδr,i, j = r/(i + r) is included for making the sum of weight frac-

tions added to the two lumps is equal to unity at all instances of time.

Furthermore, it was assumed that kr,i,j = ki,r,j implying the symmetry

of the kinetic constants included in Eq. (1). The detailed description

for the derivation of Eq. (2) can be found elsewhere [6].

For deriving analytical solution, the coefficients in the first term

on right-hand side for the formation of products within the lumps

are conveniently grouped using the factor αr. Similarly, the coeffi-

cients in the second term on right-hand side for the disappearance

of hydrocarbons in a reactant lump are grouped using the factor βr.

Thus, these two factors are

αr = 2

r∑
j=1

δr, j,r�r, j,rkr, j,r, and (3a)

βr =
r∑

i=1

r∑
j=1

�i, j,rki, j,r (3b)

Therefore, Eq. (2) can be conveniently written as

dwLr

dt
= 2

NL∑
j=r+1

j∑
i=1

δr,i, j�r,i, jkr,i, jwLj
+ (αr − βr)wLr

(4)

The matrix-vector form of Eq. (4) can be represented as

ẇL = RwL (5)

where,

ẇL =
(

dwL1

dt
,

dwL2

dt
, · · · dwLr

dt
, · · · ,

dwLNL−1

dt
,

dwLNL

dt

)T

,

wL = (wL1
, wL2

, · · · , wLr
, · · · , wLNL−1

, wLNL
)T and

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 − β1 2
∑2

j=1 δ1, j,2�1, j,2k1, j,2 · · · 2
∑r

j=1 δ1, j,r�1, j,rk1, j,r · · · 2
∑NL−1

j=1
δ1, j,NL−1�1, j,NL−1k1, j,NL−1 2

∑NL
j=1

δ1, j,NL
�1, j,NL

k1, j,NL

0 α2 − β2 · · · 2
∑r

j=1 δ2, j,r�2, j,rk2, j,r · · · 2
∑NL−1

j=1
δ2, j,NL−1�2, j,NL−1k2, j,NL−1 2

∑NL
j=1

δ2, j,NL
�2, j,NL

k2, j,NL
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0 0 · · · αr − βr · · · 2
∑NL−1

j=1
δr, j,NL−1�r, j,NL−1kr, j,NL−1 2
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δr, j,NL
�r, j,NL
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0 0 · · · 0 · · · αNL−1 − βNL−1 2
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j=1
δNL−1, j,NL

�NL−1, j,NL
kNL−1, j,NL
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