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a b s t r a c t

A two-stage (TS) parameter estimation method for identifying ordinary differential equation (ODE) models,

which minimizes the squared residuals between the derivatives of the fitted values of available measure-

ments and the rate changes of the states, is presented. The model is an alternative to the traditional method,

in which the measured squared residuals and measurements of state are used to obtain near-optimal esti-

mated parameters for ODEs in the first stage of the TS method. Therefore, the problem of ill-conditioning,

encountered in integrating the system equations, can be ignored. The second stage of the TS method min-

imizes the squared residuals in the model’s traditional integrated form by using the estimated parameter

values from the first stage as initial guesses. Three examples were examined, and the results confirmed the

utility of the developed TS parameter estimation method for easy programming and low computation time.

The first example is a semi-batch reactor model of toluene hydrogenation, while a continuous stirred-tank

reactor model is used for the second example. Finally, a batch-process model focused on the synthesis of

glycerol ether synthesis from glycerol and tert-butyl alcohol is examined.

© 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

A fundamental task in engineering and scientific research is

the extraction of information from raw data. Accurate parameter

estimation is crucially important for setting boundary conditions and

estimating the constants that are crucial to in the mathematical mod-

els that we use for process simulation [1]. Obtaining good param-

eter values requires reliable parameter estimation techniques. The

models that describe underlying process behavior, within defined ini-

tial and boundary conditions may be presented as algebraic, differ-

ential, or integral equations. Among the models, ordinary differen-

tial equations (ODEs) or differential-algebraic equations (DAEs) are

widely used to model dynamic processes in natural science disci-

plines spanning biology to engineering [2]. This article focuses on

developing an efficient and easy-to-use parameter estimation algo-

rithm using continuous-time ODEs or DAEs. The scripts lsqnonlin and

scripts ode45 that are used to solve nonlinear least-squares (i.e. non-

linear data-fitting) problems and initial value problems for ordinary

differential equations respectively, constitute the central parts of the

developed parameter estimation algorithm.

The most often used statistical techniques used to obtain the pa-

rameters of an input—output model adopt least-squares (linear or
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non-linear) regression, involving minimization of the objective func-

tion with respect to known parameters, which is usually the sum

of the squared differences, i.e. between measured values and the

model’s predictions. Conventional optimization methods are com-

monly placed in one of two categories, i.e. direct search or gradient

based methods. The methods are contrasted in that gradient based

search methods require derivatives of the objective function, while

direct search methods are derivative free. The Gauss-Newton method,

a gradient based method, is an iterative nonlinear least-squares (NLS)

procedure applicable to parameter estimation in ODE/DAE models

with no analytical solutions. ODEs, or DAEs, when used to simulate

dynamic experiments use guesses for the initial parameter values

[3]. Linga et al. [4], compared the direct search optimization method

of Luus and Jaakola (LJ) [5] and the Gauss-Newton (GN) method [6],

which can be used to solve four parameter optimization problems,

commonly encountered in the sciences, in e.g. chemical and biochem-

ical processes, which are currently described by ordinary differential

equation based models. It was found that in contrast to the initial

guesses having only a minimal influence on the resulting optimized

parameters, the Gauss-Newton algorithm was sensitive to the values

chosen.

A new optimization algorithm has been created to compute a

set of parameter estimates for the model that should give better

predictions—based on a comparison of model predictions and mea-

sured responses. Sensitivity equations, solved along with the model

ODEs, give the Jacobian of the response variables with respect to the
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parameters [7], so that the ‘optimizer’ can determine the correct

search direction to refine the parameters’ values [4]. Alternatives, us-

ing either a numerical Jacobian, or a direct-search optimizer, require

additional dynamic simulations, together with perturbations for each

parameter. The ODEs (or DAEs) are solved numerically, subsequent to

the determination of new parameter values being determined by the

optimizer, using the updated parameters. The derived information

is then compared with observed data—iteration involving parameter

updating and the computation of numerical solutions continues until

the parameters’ convergence criteria are satisfied; or, until there is no

additional improvement in the objective function. In terms of compu-

tation, such iterative methods can be time consuming, with much of

computational effort being devoted to the repeated solution of the

differential equations. With respect to the unknown values of the ini-

tial states, one needs to estimate them along with the model parame-

ters. Furthermore, numerical integration of the differential equations

can get stuck at a parameter domain, resulting in the cessation of the

parameter estimation process. Similar problems can occur in the ap-

plication of the direct method.

Varah [8] developed an alternative parameter estimation tech-

nique, not requiring repeated solution of the ODEs, which is based

on the works of Swartz and Bremermann [9] and Benson [10]. In

this approach, together with a related technique, known as ‘prin-

cipal differential analysis’ (PDA) [11], discrete measurements of the

output variables, y, are fitted empirically using splines that can be

differentiated with respect to time to give estimated time-derivative

curves. This time-derivative information is substituted into the ODEs,

thereby converting the estimation of parameters, from a relatively

difficult dynamic optimization problem, into a comparatively simple

algebraic optimization operation that can be solved using either lin-

ear, or nonlinear, least-squares methods depending on the linearity

of the ODEs in the parameters. PDA techniques [8,11] differ from the

often used nonlinear least-squares methods for dynamic models, and

from an early spline-based method [12] and its iterative extension

as given by Madar et al. [13]. In PDA, the parameter values are se-

lected to minimize squared residuals in the differential form of the

model, rather than in the traditional integrated form. Ramsay and

Silverman [14] and Poyton et al. [3] extended Varah’s method by it-

erating the two steps, and replacing the previous iteration’s ‘rough-

ness penalty’ with a penalty on the model’s differential form using

the last minimizing value of the estimated parameters k. They found

that the PDA approach, converged quickly to give estimates of both

x (states or outputs of ODEs) and k (unknown structural parame-

ters) giving substantially improved bias and precision. Ramsay et al.

[15] described a method that used ‘noisy measurements’ on a subset

of variables in order to estimate parameters that define a system of

non-linear differential equations. Their approach used modified data

smoothing methods together with a generalized profiled estimation.

A developed multi-criterion optimization problem based on the in-

ner, middle and outer criteria for obtaining estimates and confidence

intervals of the parameters showed them to have low bias and good

coverage properties. Ramsay et al. [15] adopted collocation methods

that express the approximation x̃i of xi in terms of the basis func-

tion (ϕi(t)) expansion x̃i(t) = c′
iϕi(t). However, the number of the

parameters c is potentially orders of magnitude larger than the num-

ber of structural parameters k; thus adding to the complexity of the

parameter estimation algorithm.

The advantage in applying the PDA method to obtain near op-

timal estimated parameters for ODEs is that the parameter values

are selected to minimize squared residuals in the differential form

of the model and not its traditional integrated form. Therefore, the

problem of ill-conditioning encountered in integrating the system

equations can be eliminated. Hence a two-stage (TS) parameter es-

timation for differential equations is proposed, which includes a

first stage to obtain near optimal estimated parameters by the PDA

method as the initial guesses for the second stage. In the second stage,

parameter estimation for differential equations by the well-

established non-linear regression framework [16] requiring integra-

tion of the system equations is then performed. Using simulation ex-

periments, the two-stage parameter estimation for differential equa-

tions, developed in this work, can provide the user with an efficient

and easy-to-use parameter estimation algorithm. The idea of employ-

ing the estimated parameters, obtained by minimizing the squared

residuals in the differential form of the underlying model, as an ini-

tial guess for the conventional approach has already been introduced

in the literatures [17–19]. Further, many two-stage parameter estima-

tion (or identification) methods have been proposed in the system

identification field [20–26].

2. Two-stage parameter estimation method

2.1. Initial parameter estimation for ODEs using the PDA method

(stage I)

Considering processes described by ODE models of the following

form.

dx(t)

dt
= f (x(t), u, k) (1)

y(t) = Cx(t) + ε (2)

Where: k = [k1, k2, . . . , kp]T is a p-dimensional vector of parame-

ters with unknown numerical values; x(t) = [x1, x2, . . . , xn]T is an

n-dimensional vector of state variables; x0 = [x10, x20, . . . , xn0]T is

an n-dimensional vector representing the initial conditions for the

state variables which are assumed to be known precisely; u =
[u1, u2, . . . , ur]T is an r-dimensional vector of manipulated variables,

either estimated, or definite if the numerical values are known e.g.

from measurements; f = [ f1, f2, . . . , fn]T is an n-dimensional vec-

tor function of known form (the differential equations); while y =
[y1, y2, . . . , ym]T is the m-dimensional output vector, i.e., the set of

variables that is measured experimentally; C is the m × n observa-

tion matrix, y = Cx + ε; and ε is a random vector.

Another important consideration is how to select the appropri-

ate objective function. In general, the unknown parameter vector k is

found by minimizing a scalar function, often termed as the objective

function, which is a measure of the overall difference between the

model-calculated-values and the measured values.

A suitable objective function to be to minimized is given by the

equation,

S(k) =
[

N∑
i=1

[ŷi − y(ti, k)]
T
Q i[ŷi − y(ti, k)]

]
(3)

Where: S(k) represents the objective function, k = [k1, k2, . . . , kp]T

is the p-dimensional vector representing parameters with unknown

values, ŷi are the experimentally measured values, y(ti, k) are the

model calculated output values, Qi is an m × m user specified weight-

ing matrix, and N is the number of experimentally measured values

for each run. The weighting matrix Qi should be chosen, such that the

parameter estimates have appropriate or desirable statistical proper-

ties. If the error terms (εi) are normally distributed with zero as the

mean and with a known covariance matrix
∑

i, then Qi is the inverse

of this covariance matrix [6].

Instead of adopting Eq. 3 as the objective function, the PDA

approach [3] suggested an alternative objective function to be

minimized:

S(k) = λT
∫

‖(C ˙̃x − C f (x̃(t), u, k))‖2dt (4)

where: λ is the weighting vector of the ODEs. The discrete mea-

surements ŷi can be fitted into a smooth function of time ỹi(t) by
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