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a b s t r a c t

This study reports the approximate analytical modeling of heat and mass transfer in hydromagnetic flow over a

non-isothermal stretched surface, incorporating the effects of heat generation/absorption and transpiration.

Homotopy analysis method (HAM) is used to obtain the analytical solutions of the non-linear governing

equations. The effects of several parameters (suction/injection parameter fw, magnetic parameter M, heat

source/sink coefficient ε, Prandtl number Pr, Schmidt numberSc, and velocity and temperature power-law

parameters m, n) on the dimensionless velocity, temperature, concentration, skin friction, and Nusselt and

Sherwood numbers are investigated. The results of the local skin friction coefficient and reduced heat transfer

rate are compared with the published data for a special case and found to be in good agreement. It is found

that the reduced Nusselt and Sherwood numbers are increasing functions of fw.

© 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

The hydromagnetic flow and heat transfer due to a stretching sur-

face have several engineering applications. For example, in the ex-

trusion of a polymer sheet from a dye or in the drawing of plastic

films, reduction of both thickness and width takes place. During the

manufacturing process, the quality of the final product depends on

the rate of heat transfer at the stretching surface [1]. Pavlov [2] exam-

ined the effect of magnetic field on flow characteristic over a stretch-

ing sheet and obtained an exact similarity solution of this problem.

Chakrabarti and Gupta [3] reported the similarity solution for hydro-

magnetic flow over a stretching surface, whereas Chiam [4] extended

the aforementioned research work of Chakrabarti and Gupta [3] to

power-law velocity of the stretched surface using shooting method.

Gupta and Gupta [5] and Ali [6] examined the effects of transpira-

tion on flow field and heat transfer. With fourth-order Runge–Kutta–

Merson method, the thermal analysis for the sheet due to power-law

velocity was examined by Ali [6]. Heat generation effect on hydro-

magnetic flow and heat transfer was studied by Chamkha [7] with

finite difference method. For various physical situations, the relative

study of heat and/or mass transfer can be found in [8–16].
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An extensive effort has been made to gain information regarding

flow problems in various situations. Such situations include consid-

eration of heat and mass transfer in magnetic field. A vast body of

literature is now available on this topic. Ahmed and Sarmah [17] in-

vestigated MHD boundary layer flow and mass transfer over a plate.

Afify [18] reported similarity solution in MHD effects of thermal dif-

fusion on free convective heat and mass transfer over a stretching

surface. Chamkha and Issa [19] investigated chemical reaction, heat

generation or absorption effects on MHD boundary layer flow over a

permeable stretching surface. Robert et al. [20] have discussed con-

vective heat transfer in a conducting fluid over a permeable stretching

surface with suction and internal heat generation/absorption. Ibrahim

and Reddy [21] examined the radiation and mass transfer effects for

MHD free convection flow along a stretching surface using shooting

method.

So far, as we noticed, no studies have been carried out to ob-

tain an analytical solution of hydromagnetic flow for heat and mass

transfer over a non-isothermal stretched surface. In this study, we

seek to obtain an approximate analytical solution of the non-linear

ordinary differential equations which is derived from the similarity

transformations. For validation of our analytical solution, results of

skin friction factor and heat transfer are compared with those ob-

tained by [4,7,8,14–16]. The results are found in good agreement and

we believe that HAM gives accurate results.

The homotopy analysis method is an approximate analyti-

cal method introduced by Liao [22] to solve various non-linear
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transport phenomena. After Liao [22], HAM has been successfully used

to solve nonlinear problems in fluid mechanics and heat transfer. For

instance, Dinarvand et al. [23] utilized HAM to study unsteady MHD

flow close to a stagnation point of a rotating and translating sphere.

Turkyilmazoglu [24] studied heat and mass transfer on MHD flow over

a stretching sheet in the presence of hydrodynamic/thermal slip using

HAM. Rashidi et al. [25] examined analytically, via HAM, laminar-

free convective flow of a two-dimensional electrically conducting

viscoelastic fluid over a moving stretching surface through porous

medium. Masood et al. [26] used HAM to investigate MHD mixed

convection Falkner–Skan flow with convective boundary conditions.

Mabood and Khan [27] studied flow and heat transfer in Darcian

porous medium with HAM. Ziabakhsh et al. [28] investigated stagna-

tion point flow in porous media. Nadeem and Akbar [29] examined

MHD heat and mass transfer on the peristaltic flow of a Johnson Segal-

man fluid in a vertical asymmetric channel using HAM while Mabood

and Khan [30] have provided homotopy solution for heat transfer on

MHD stagnation point flow in porous medium. These studies indi-

cated the strength, effectiveness and flexibility of HAM to provide

highly accurate analytical solutions for nonlinear problems.

In the present investigation, we studied heat and mass transfer on

MHD flow over a non-isothermal stretched surface in the presence

of suction/injection and heat generation/absorption. The considered

problem is an extension of the paper of Chamkha [7], who studied only

flow and heat transfer for hydromagnetic flow. The basic equations

governing the flow are in the form of partial differential equations

and have been reduced to a set of non-linear ordinary differential

equations by using suitable similarity transformations. These equa-

tions are solved by homotopy analysis method. The expressions for

dimensionless velocity, temperature and concentration are obtained.

The effects of suction/injection (fw), magnetic parameter (M), heat

generation\absorption parameter (ε), Prandtl number (Pr), velocity

exponent parameter (m), temperature exponent parameter (n) and

Schmidt number (Sc) on the skin friction, dimensionless heat and

mass transfer rates are studied.

2. Governing equations

Consider a two-dimensional steady, laminar, hydromagnetic flow

of a quiescent electrically conducting fluid driven by a non-isothermal

permeable stretched surface. The power-law velocity and tempera-

ture distributions are assumed in the analysis. A non-uniform trans-

verse magnetic field is imposed normal to the flow direction. The

magnetic field induced by the motion of the electrically conducting

fluid and the pressure gradient are neglected. The governing equa-

tions for the continuity, momentum and energy can be written as

∂u

∂x
+ ∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σ

B(x)2

ρ
u, (2)

u
∂T

∂x
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∂T
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∂2T

∂y2
+ Q (x)

ρcp
(T − T∞), (3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
, (4)

where x and y are the coordinates along and normal to the surface,

u and v are the components of the velocity in the x- and y-directions

respectively, ρ is fluid density, ν is kinematic viscosity, D is mass

diffusivity, σ is the electrical conductivity, B(x) is the variable mag-

netic field, α is the thermal diffusivity, cp is specific heat at a constant

pressure, Q(x) is the heat generation/absorption coefficient, T is the

temperature, and T∞ is the ambient temperature of the fluid. The

boundary conditions for the above model are [7]:⎧⎨
⎩

y = 0 : u(x) = uw(x) = U0xm, v = vw(x),
T = Tw(x) = axn + T∞, C = Cw,

y → ∞ : u(x) = 0, T = T∞, C = C∞,

(5)

where U0, a, m and n are constants and uw(x), vw(x), and Tw(x)are the

surface velocities along and normal to the surface and temperature at

the wall, respectively.

In the usual manner, the stream function ψ is defined as u =
∂ψ/∂y and v = −∂ψ/∂x so that Eq. (1) is satisfied. Introduce the

similarity transformations:

η =
√

(m + 1)xmU0

2νx
y, ψ =

√
2νU0xm+1

m + 1
f
(
η
)
, θ = T − T∞

Tw − T∞
,

φ = C − C∞
Cw − C∞

, (6)

where η is the similarity variable. A similarity solution arises if the

magnetic induction B(x)and the heat generation/absorption Q(x) take

on the forms:

B(x) = B0x(m−1)/2, Q(x) = Q0x(m−1), (7)

where B0 and Q0 are constants.

Under the transformations (6), the differential equations (2)–(4)

reduce to

f ′′′ + ff ′′ − Af ′2 − Mf ′ = 0, (8)

θ ′′ + Pr

(
fθ ′ − A

m
(nf ′ − ε)θ

)
= 0, (9)

φ ′′ + Scfφ ′ = 0, (10)

with boundary conditions

f (0) = fw

√
2

m + 1
, f ′(0) = 1, f ′(∞) = 0, θ(0) = 1,

θ(∞) = 0, φ(0) = 1, φ(∞) = 0. (11)

where Pr = ν
α is the Prandtl number, Sc = ν

D is the Schmidt num-

ber, A = 2m
m+1 is a constant, M = 2σB2

0
ρ(m+1)U0

is the magnetic parame-

ter, ε = Q0
ρcpU0

is the dimensionless heat generation/absorption co-

efficient, fw = −vw

√
x1−m/U0ν is suction/injection parameter with,

fw > 0 representing suction, fw < 0 representing injection and fw = 0

corresponding to an impermeable surface. The prime denotes differ-

entiation with respect to η.

The physical quantities of interest are the local skin friction Cf , the

local Nusselt number Nux, and the local Sherwood number Shx. Phys-

ically, Cf represents the dimensionless wall shear stress, Nux and Shx

define the dimensionless heat and mass transfer rates respectively.

Cf = μ

ρu2
w

(
∂u

∂y

)
y=0

, Nux = −x

Tw − T∞

(
∂T

∂y

)
y=0

,

Shx = −x

Cw − C∞

(
∂C

∂y

)
y=0

, (12)

Using Eq. (6) into Eq. (11) to obtain the final dimensionless form

√
RexCf =

√
m + 1

2
f ′′(0),

Nux√
Rex

= −
√

m + 1

2
θ ′(0),

Shx√
Rex

= −
√

m + 1

2
φ ′(0), (13)

where Rex = uwx
ν is local Reynolds number. From Eq. (13) we see that

the local skin friction Cf , the local Nusselt number Nux, and the local

Sherwood number Shx are proportional to the numerical values of

f ′′(0), −θ ′(0) and −φ′(0) respectively.
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