
Journal of the Taiwan Institute of Chemical Engineers 54 (2015) 57–63

Contents lists available at ScienceDirect

Journal of the Taiwan Institute of Chemical Engineers

journal homepage: www.elsevier.com/locate/jtice

Optimal design of growth-coupled production strains using nested

hybrid differential evolution

Feng-Sheng Wang∗, Wu-Hsiung Wu

Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan

a r t i c l e i n f o

Article history:

Received 10 December 2014

Revised 13 March 2015

Accepted 15 March 2015

Available online 1 April 2015

Keywords:

Growth-coupled production strain

Hybrid differential evolution

Bi-level optimization problem

Flux balance analysis

Flux variability analysis

a b s t r a c t

Various traditional optimization approaches have been applied to identify optimal manipulation strategies for

metabolic networks of microorganism leading to maximization of desired products. However, because of the

transient effects of traditional strategies on production rate, the design of growth-coupled production strains

is essential for metabolic engineering. Most current approaches for optimal strain design problems apply a

two-stage procedure to identify a growth-coupled strain. This study reformulated the optimal strain design

problem as a decision making problem with a guarantee of identifying growth-coupled production strains,

and a nested hybrid differential evolution (HDE) algorithm that combined the two-stage procedure into one

stage was introduced to solve this problem. The performance of the proposed algorithm was demonstrated

by using it to design several growth-coupled production strains for a genome-scale metabolic model of

Escherichia coli iAF1260. The nested HDE was able to control the magnitude of the association between cell

growth rate and chemical production rate and can outperform state-of-the-art algorithms for the design of

growth-coupled strains.

© 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

The goal of metabolic engineering is to obtain optimal manipu-

lation strategies for metabolic networks of bacteria leading to maxi-

mization of desired products [1]. Various traditional strategies have

been employed to achieve this goal, including elimination of com-

peting pathways, over expression of genes to increase fluxes of pro-

duction pathways, and activation of inactive pathways to maximize

the production rate of target compounds at the expense of growth

rate [2,3]. Experiments based on traditional strategies have observed

transient effects on production rate, i.e., mutants always increase their

growth rate and decrease production rate after adaptive evolution [4].

A promising and innovative method to solve this problem is the design

of growth-coupled production strains that increase the production of

target compounds as they evolve to higher growth rates.

Mathematical modeling is a crucial tool for the design of growth-

coupled production strains; modeling and analysis typically imple-

ment dynamic and static approaches [5–7]. Dynamic approaches with

kinetic models use prior knowledge to make specific molecular pre-

dictions and work most effectively with pathways where components

and connectivity are relatively firmly established [5,6]. Static ap-
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proaches, such as constraint-based reconstruction and analysis (CO-

BRA), consist of stoichiometric relationships of metabolic networks

that can be applied to the study of genome-scale metabolism [7,8].

Both approaches have also been used to investigate the effects of en-

vironmental and genetic perturbations on the metabolic capabilities

of an organism [9], and numerous algorithms have been developed to

solve constraint-based problems [10–18]. Flux balance analysis (FBA)

is the most popular approach for determining optimal flux distribu-

tions of wild-type microorganisms and for identifying the optimal

metabolic state of mutant strains by using linear programming (LP)

[8]. FBA predicts cellular behavior based on the assumption of maxi-

mized biomass growth rate, which can predict various metabolic phe-

notypes [11]. By contrast, the minimization of metabolic adjustment

(MOMA) identifies optimal flux solutions of mutants based on the

minimization of Euclidean norm of flux differences between wild type

and gene knockout strains using quadratic programming (QP) [12].

Regulatory on/off minimization (ROOM) is another constraint-based

flux analysis technique that minimizes the number of significant flux

changes by using mixed integer linear programming (MILP) [13].

Recently, the growth-coupled strain design problem was formu-

lated as a bi-level optimization problem (BLOP) that consists of a

bioengineering optimization problem with integer variables and a

cellular optimization problem. The BLOP is a special case of multiob-

jective optimization problems and numerous solutions for solving it

have been developed, including OptKnock [14], OptStrain [15], Op-

tReg [16], OptForce [17], OptORF [18], EMILiO [19], and ReacKnock
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[20]. These methods transfer the BLOP into a single-level mixed-

integer linear programming (MILP) problem by applying duality the-

ory or Karush–Kuhn–Tucker method to the optimization problem in

the inner level. However, such a duality transformation can increase

computational time exponentially when the problem dimension in-

creases. Although the OptKnock algorithm requires a long CPU time

(up to one week) to predict a five-reaction knockout design using

the E. coli iAF1260 model, it was the first constraint-based method

used to predict strain designs for various substrates and products

[21]. To avoid non-uniquely growth-coupled strains, RobustKnock

extended the OptKnock method to yield guaranteed production rates

by accounting for the presence of competing pathways in the net-

work model iJR904 [2]. Evolutionary algorithms have been applied to

identify the modulated genes of strain-design problems with a user-

defined objective function in which complicated nonlinear objective

functions can be used [21–27].

Most methods solving the BLOPs apply a two-stage process to

identify a growth-coupled strain. A candidate set of target reactions is

obtained by solving the BLOP in the first stage. However, the solution

of BLOP may not be a growth-coupled production strain. A posterior

decision-making procedure is conducted to identify a growth-coupled

strain from the candidate set in the second stage. This study merged

the two-stage process into a one-stage multilevel optimization prob-

lem supporting decision making. Two optimization problems for flux

variability analysis (FVA) in the inner level of the multilevel optimiza-

tion problem guarantee that the optimal solution is a growth-coupled

strain. We had developed a hybrid differential evolution (HDE) algo-

rithm previously for static and dynamic optimization of fedbatch fer-

mentation processes [28]. This algorithm has been applied to many

optimization problems, such as parameter estimation [29], chemical

plant design [30], and modeling of biological systems [31]. In this

study, the HDE algorithm was extended to a nested procedure to

solve the genome-scale multilevel optimization problem for the de-

termination of optimal growth-coupled production strains through

the introduction of fuzzy membership functions.

2. Problem formulation and methods

2.1. Cellular flux analysis

The FBA problem is an in silico flux-based optimization problem

for the prediction of metabolic flux distributions in genome-scale

metabolic networks. Such optimization problem includes a cellular

objective function vcellular (e.g., the maximization of cell growth rate)

governing cellular behavior, and can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FBA problem:

max
v

vcellular

subject to

Nv = 0

vi = 0, i ∈ �KO

vLB
j

≤ vj ≤ vUB
j

, j /∈ �KO

(1)

where v is an n-dimensional vector of intracellular fluxes, N is an

m × n stoichiometric matrix where m is the number of metabolites

and n is the number of reactions, �KO is the set of knockout reac-

tions, and vLB
j

and vUB
j

are the lower and upper bounds of flux of

reaction j that do not belong to �KO, respectively. The flux value was

set to zero if the corresponding reaction was selected to be knocked

out. Although FBA assessed the theoretical fluxes solely based on the

information regarding the stoichiometry of metabolic networks and

fundamental physicochemical constraints in the absence of kinetic

information on the dynamics and regulation of metabolic reactions,

it can incorporate additional available information by adding equa-

tions that impose bounds on the fluxes as the inequality constraints in

Eq. (1) [8]. Some known systemic constraints on the fluxes of exchange

reactions under different growth conditions have been validated ex-

perimentally [32] and were included in the genome-scale model of

E. coli, iAF1260. By imposing these systemic capacity constraints on

exchange reactions, the flux distribution of whole metabolic network

obtained by FBA based on the maximization of cellular growth and

the study of feasible metabolic behavior within these systemic con-

straints will be more sensible.

The FBA problem can have multiple solutions with a same cellular

optimal objective value. Flux variability analysis determines the flux

range of each reaction based on the maximal cellular objective by

solving one minimization optimization problem and one maximiza-

tion optimization problem [33], and is formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FVA problem:

max
v

/ min
v

vbioeng

subject to

Nv = 0

vcellular ≥ vFBA
cellular

vi = 0, i ∈ �KO

vLB
j

≤ vj ≤ vUB
j

, j /∈ �KO

(2)

where vbioeng is the bioengineering objective and vFBA
cellular

is the optimal

solution to the FBA problem. FVA was used not only to determine

alternative optima in the FBA problem, but also to determine if a

mutant is a unique growth-coupled strain. This study embedded FVA

as a constraint in the optimal strain design problem to determine a

growth-coupled production strain.

2.2. Optimal strain design problem

The design of growth-coupled production strains intends to iden-

tify mutants employed the smallest number of knockout reactions to

achieve certain specifications (e.g., maximal product yield or maxi-

mal substrate specific productivity) [21], and can be formulated as a

multiobjective decision-making problem as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
z

f1 ≡ vminFVA
bioeng

max
z

f2 ≡ vFBA
cellular

min
z

f3 ≡ ∑
j

zj

subject to

obj

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

min
v

vbioeng

subject to

Nv = 0

vcellular ≥ vFBA
cellular

vi = 0, i ∈ �KO

vLB
j

≤ vj ≤ vUB
j

,

j /∈ �KO

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= obj

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max
v

vbioeng

subject to

Nv = 0

vcellular ≥ vFBA
cellular

vi = 0, i ∈ �KO

vLB
j

≤ vj ≤ vUB
j

,

j /∈ �KO

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
v

vcellular

subject to

Nv = 0

vi = 0, i ∈ �KO

vLB
j

≤ vj ≤ vUB
j

, j /∈ �KO

(3)

where obj(min vbioeng, . . .) = vminFVA
bioeng

and obj(max vbioeng, . . .) =
vmaxFVA

bioeng
stand for the optimal objective values of the minimization

and maximization optimization problems, respectively, and z is

a binary vector indicating the deletion status of reactions. The

outer level consists of three objective functions to make a deter-

mination toward a satisfactory strain and one equality constraint,
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