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To develop an efficient experimental design method for real process applications, the well-known
expected improvement infill criterion, which is usually adopted in achieving the surrogate-based
optimization, and the global optimizer DIRECT are combined as the core of the developed experimental
method. The method iterates through initial experimental design, empirical modeling and model-based
optimization to allocate informative experiments for the next iteration. Specifically, the Kriging
regression is adopted as the surrogate model due to its demonstrated prediction accuracy and reliable
prediction uncertainty. Adopting a suitable threshold value of the initial expected improvement during
the optimization process, the experiments located by the global optimizer could accelerate the
optimization process to reach the defined target. Three termination criterions for stopping the iterating
process are proposed to meet the requirements of both the simulation optimization problems and the
experimental systems. Three simulation test problems demonstrate the efficiency of the developed
experimental design method.
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1. Introduction

The design of new products, or the improvement of existing
ones, as well as the design and development of manufacturing
processes to produce them, are crucial activities in most industrial
organizations. It is beneficial to develop a new product and process
design as well as to improve an existing process using statistically
designed experiments when the input-output relationship of the
process is unknown or partially known [1]. Most of the early
development of experimental design was stimulated by applica-
tions in agriculture. Since its beginnings in agriculture, experi-
mental design has applications across many sectors of industry.
The statistical principles underlying design of experiments were
largely developed by R.A. Fisher during his pioneering work at the
Rothamsted Experimental Station in the 1920s and 1930s [2]. The
use of experimental design methods in the chemical industry was
promoted in the 1950s by the extensive work of Box and his
collaborators on response surface designs [3]. Experimental design
techniques are also becoming popular in the area of computer-
aided design and engineering using computer/simulation models,
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including applications in manufacturing (the automobile and
semiconductor industries), as well as in the nuclear industry [4].
Statistical issues in the design and analysis of computer/simulation
experiments are discussed in [5].

Generally, experiments are used in studying or evaluating the
performance of physically unknown or partially known systems.
The objectives of the experiment may include the following [1]:

(a) to determine which variables are most influential in the
response of the system;

(b) to determine where to set the influential variables so that the
response or responses of the system are almost always near
desired target values;

(c) to determine where to set the influential variables so that the
variability in the response(s) is small; or

(d) to determine where to set the influential variables so that the
effects of uncontrolled variable on the response(s) are small.

To achieve the objectives (a) and (b), which are the main
concerns of this work, the following experimental design scheme is
usually adopted [6]:

(a) first the variables to be optimized are chosen, often due to their
importance, as determined by preliminary experiments;
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(b) some initial sample designs are analyzed according to some
pre-defined plan;

(c) a surrogate model type is selected and used to build a model of
the underlying problem;

(d) a search is carried out using the model to identify new design
points for analysis;

(e) the new results are added to those already available and,
provided further analyses are desired, the process returns to
step (c).

The response surface methodology (RSM) addressing the above
experimental design scheme has been applied successfully in
various fields such as the chemical industry, biology, medicine, and
economy [3,7-9]. The success or failure for applying the
experimental design to a process system short of mechanistic
information hinges on a correct choice of the surrogate model
(metamodel) and efficient infill criteria. However, in traditional
RSM, the first- or second-order polynomial response surface (PRS)
approximation [7] is adopted for empirical modeling or as the
surrogate model. The restrictive functional form of polynomials
has long been recognized as ineffective in modeling complex
processes [9,10]. The alternatives that could be adopted as the
surrogate models or metamodels for the studied system are
artificial neural networks (ANN) [10-14], multivariate adaptive
regression splines [15], support vector regression (SVR) [16-19],
radial basis functions (RBF) [20-22], Kriging (KR) [5,23,24] and
Gaussian process regression (GPR) [25-27]. Fang et al. [28] found
RBF gives accurate metamodels for highly nonlinear responses
whereas. Simpson et al. [29] found Kriging to be most suitable for
slightly nonlinear responses in high-dimension spaces. Jin et al.
[30] proposed the use of PRS for slightly nonlinear and noisy
responses, while Clarke et al. [17] found SVR metamodels to be the
best in their study [31]. Queipo et al. [32] provide a good review of
different metamodeling techniques for surrogate-based analysis
and optimization.

The success of applying any global optimization method to
experimental design based on a nonparametric surrogate model
hinges on the effective provision of a balance between local and
global searches [33-38]. Because the identified surrogate model
is only an approximation of the true process we wish to optimize,
it is tempting to enhance the accuracy of the model using further
experimental responses (infill or update points), in addition to
the initial sampling plan. On one hand, one may wish to improve
the accuracy solely in the region of the optimum predicted by the
surrogate to obtain an accurate optimal value quickly and make
local exploitation; on the other hand one may, however, be
unsure of the global accuracy of the surrogate and employ an
infill strategy which enhances the general accuracy of the model
and make global exploration [6]. Forrester et al. [6] reviewed
several infill criteria including (a) prediction based exploitation;
(b) error based exploration; (c) balanced exploitation and
exploration; (d) conditional likelihood approaches and (d) other
methods (parallel infill points, hybrid criteria) using the
identified surrogate model that can provide the expected (mean)
value and the variance of the process response. The most famous
expected improvement infill criterion and its extensions [34,39]
were frequently adopted in the computer/simulation experi-
ments. Among the available surrogate models, Forrester et al. [6]
suggested that the Gaussian bases (e.g., KR and GPR) perform
properly for both simple and complex landscapes for an
unknown multi inputs-single output (MISO) system y = f{x) with
its dimension k of the design variable vector x less than 20, which
is usually the cases for real processes. Furthermore, both these
two surrogate models are quite efficient for finding the infill
points in achieving the global optimum of the unknown process.
An interactive approach for determining the infill points was

proposed by Chia et al. [9] when used for investigating real
processes. Their suggestion involves active and subjective
decision of the experimenter and this human intervention brings
in domain knowledge that is often difficult to be properly
incorporated in the modeling framework.

Choosing a suitable convergence criterion to determine when to
stop the surrogate infill process is rather subjective [6]. In the face
of limited experimental resources for a real process, this is an
important issue for a process engineer or researcher. In this work,
an additional global optimizer such as DIRECT optimization
algorithm [40] will be augmented to improve the efficiency of
the expected improvement algorithm [34] in finding the infill
points and to determine the convergence of the infill process in
achieving a global optimum when dealing with a real process. The
capability of the proposed experimental design via the data-driven
global optimization methodology will be examined by three test
examples. The first example is the modified Himmelblau function
of two independent variables studied by Chang and Lin [10] and
Chen et al. [11]. Fundamentally, this example is a static problem.
The second example is concerned with a dynamic problem, which
involves determining an optimal temperature trajectory of a batch
reactor where a series reaction is carried out [ 10]. The last example
is the simulated process based on the experimental data from the
batch heterogeneous catalytic etherification reaction system [41].
For these three case studies, the proposed experimental design
method in this work was applied to build a developing surrogate
model and to locate the optimum of an unknown process
simultaneously based on fewer experiments [10].

In the following section, the principle and implementation of
the developed experimental design that adopts the expected
improvement infill criterion supported by a global optimizer
DIRECT are described. In Section 3, the capability of the developed
experimental design method is presented through the test
examples. The final section draws the conclusions for this study.

1.1. Experimental design via the data-driven global optimization
methodology

Fig. 1 illustrates the proposed data-driven global optimiza-
tion framework for the efficient experimental design. The
proposed scheme is similar to the conventional experimental
design scheme shown in the introduction section of Forrester
and Keane [6]. Specially shown in Fig. 1 is a specific Gaussian
process surrogate model (KR or GPR) adopted. Based on the
identified surrogate model, the expected improvement algo-
rithm supported by a global optimizer is used to allocate new
experiments. Finally, when to stop the optimization process can
be judged by visualizing whether the process response is
approaching what is estimated by the global optimizer (DIRECT).
The various aspects of the framework will be discussed in more
detail below.

1.2. The objective function

The goal of the data-driven global optimization process is to
minimize the objective (or loss) function, f{x), within the feasible
region,
min f(x) (1)
where f(X) represents the expected performance of a system and x
is a k dimensional design variable vector to be adjusted. We
consider the system as a black box that provides no information
other than the measurements of system performance. We assume
that the feasible region ycR¥ is continuous, connected, and
compact. The measurement y of the objective function contains
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