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1. Introduction

Ultrafiltration (UF) membrane is extensively applied to the
product recovery and pollution control in chemical, electronic,
food, pharmaceutical, water treatment and biotechnological
industries [1,2]. Pure water flux (PWF) and rejection ratio (RR)
are the most important performances to characterize UF mem-
branes [3,4]. To optimize the fabrication of UF membrane via dry/
wet phase inversion, traditional orthogonal method is the most
widely used owing to its sufficient accuracy [5,6]. However, the
method cannot get a function expression between preparation
conditions and membrane performances and hence it is difficult to
find out the optimal factor combination [7,8].

Backpropagation neural network (BPNN) due to its good
robustness and fault tolerance is widely used in optimization
and function approximation [9–13]. The biggest problem involved
in the application of BPNN is easily convergent to a local solution
[14,15]. To overcome this problem, several global search techni-
ques including genetic algorithm (GA) have been developed. Up
until now, GA has mainly been used to search the optimal solution
of BPNN function [16–20].

In the field of membranes, BPNN models have been used
frequently in membrane filtration process, to predict the evolution
of membrane fouling [21–25] or membrane performances under
different separation parameters, for instance, concentration of
solute, solution viscosity, transmembrane pressure difference,
temperature and filtration time [10,11,26–30]. The application of
BPNN to the membrane fabrication has rarely been reported yet. In
our previous work [31], we successfully constructed hybrid models
which employed GA to choose the initial connection weights of
BPNN to predict the effects of preparation conditions on pervapora-
tion performances of polydimethylsiloxane (PDMS)/ceramic com-
posite membranes. However, the UF membrane which is porous is
totally different from the pervaporation membrane that is nonpo-
rous. Therefore, it is necessary to construct hybrid models for
optimization of UF membrane fabrication.
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A B S T R A C T

Hybrid models based on backpropagation neural network (BPNN) and genetic algorithm (GA) were

constructed to optimize the fabrication of polyetherimide (PEI) ultrafiltration (UF) membrane via dry/

wet phase inversion. BPNN was employed to capture the detailed relationships between the preparation

conditions and the UF membrane performances, and GA was used to choose the initial connection

weights and biases of BPNN to avoid convergence at suboptimal solutions. The excellent agreements

between the model predictions and the testing data indicate that the hybrid models have sufficient

accuracy. The effects of preparation conditions on membrane performances were predicted by the

hybrid models successfully, which indicate that PEI/N,N-dimethylacetamide (DMAc)/1,4-butyrolactone

(GBL) is the best membrane casting system investigated in this study. Furthermore, the optimal

preparation conditions were forecasted, and membranes with desired performances, for instance, higher

pure water flux (PWF) and bovine serum albumin (BSA) rejection ratio (RR) 80–90% were fabricated with

the standard deviation between the predicted performances and validation experimental values less

than 10%. The hybrid models can contribute to collaborative optimization of multiple parameters and

designing the preparation conditions to obtain desired UF membrane performances and avoiding large

experimental data scattering in the fabrication of phase inversion membranes.

� 2013 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Abbreviations: BPNN, backpropagation neural network; BSA, bovine serum albu-

min; BuOH, n-butanol; Da, Dalton; DE, diethyl ether; DMAc, N,N-dimethylaceta-

mide; GA, genetic algorithm; GBL, 1,4-butyrolactone; PEG400, polyethylene glycol

with average molecular weight of 400 Da; PEI, polyetherimide; PDMS, poly-

dimethylsiloxane; PVP, polyvinylpyrrolidone; PWF, pure water flux; RR, rejection

ratio; SSE, sum square error; UF, ultrafiltration.
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In this study, the fabrication of polyetherimide (PEI) UF
membrane via dry/wet phase inversion was optimized by the
hybrid models. Effects of PEI concentration, temperature of water
coagulation bath, additive type and concentration on membrane
performances were predicted by the hybrid models and verified by
experimental data. According to the hybrid models, the best
membrane casting system of the six was determined. Furthermore,
the optimal preparation conditions were forecasted, and mem-
branes with desired performances were fabricated.

2. Experimental

2.1. Materials

PEI purchased from General Electric Plastics (USA) in pellet
form and polyvinylpyrrolidone (PVP) supplied by Shanghai
Chemical Reagent Station (China), were dried in a vacuum oven
at 105 8C to constant weight. 1,4-Butyrolactone (GBL) purchased
from Tianjin Guangfu Fine Chemical Research Institute (China) and
N,N-dimethylacetamide (DMAc) supplied by Beijing Chemical
Plant (China) were dried over molecular sieve beads (50 nm, Dalian
Liaodong Chemical Reagent Co., China) before used. Bovine serum
albumin (BSA) with average molecular weight of 67,000 Dalton
(Da) bought from Beijing Aoboxing Biological Product Company
(China), n-Butanol (BuOH) purchased from Shenyang Reagent
Plant 3 (China), Diethyl Ether (DE) supplied by Tianjin Tanggu
Industrial and Commercial Industry Co. (China), and polyethylene
glycol with average molecular weight of 400 Da (PEG400) bought
from Guangdong Province Xilong Chemical Factory (China) were

used without further purification. All the chemicals were of
analytical grade.

2.2. Membrane preparation

The PEI UF membranes were prepared by dry/wet phase
inversion method. Polymer PEI without or with a kind of additive
(BuOH, DE, PEG400, PVP and GBL) was dissolved in solvent DMAc
by mechanical stirring for 8 h at 90 8C to form a homogenous
membrane casting solution. Air bubbles in the casting solution
were removed by vacuum degassing for 30 min. The casting
solution was cast on a non-woven fabric (Ahlstrom, Finland). After
exposed to air with the relative humidity of around 55% for a few
seconds, the cast films were immersed in a water coagulation bath
for 24 h, where the polymer precipitation occurred due to the
exchange of solvent in the cast film and non-solvent (water) in the
coagulation bath, and then the membrane was formed.

2.3. Membrane characterization

A home made UF cell was used to measure pure water flux
(PWF) and rejection ratio (RR), with the effective membrane area of
33.18 � 10�4 m2 and transmembrane pressure difference of
0.1 MPa. Prior to the experiments, the as-prepared membrane
was compacted in the cell by deionized water for 30 min under the
transmembrane pressure difference of 0.15 MPa.

The PWF (m3/(m2 h)) is defined by Eq. (1).

PWF ¼ Q

S � tp
(1)

where Q is the volume of the permeate pure water (m3), S is the
effective area of the membrane (m2), and tp is the permeation time
(h).

The RR, tested with 0.5 kg/m3 BSA solution, is calculated by
Eq. (2).

RR ¼ 1 � Cp

Cf
(2)

where Cp and Cf is the BSA concentration of permeate and
feed, respectively, which is determined by ultraviolet–vis
spectrophotometer (Shanghai xinmao instrument Co., Ltd., China)
at 280 nm.

3. Modeling schemes of the hybrid models

A commercially available software program (MATLAB Version
7.0.0.19920, genetic algorithm and direct search toolbox v. 1.0.1,
neural network toolbox v. 4.0.3, the Math Works Inc.) was used to
implement GA and BPNN on a personal computer.

3.1. Training/testing data

In the dry/wet phase inversion process, membrane perfor-
mances are mainly determined by the concentration of PEI casting
solution (CPEI), the type of additive (tadd), the concentration of
additive (Cadd), evaporation time (t), temperature of the water
coagulation bath (T) and relative humidity of air [32]. In our
preparation processes, relative humidity of air remained constant
at about 55%. Therefore, the variables that influenced the
membrane performances were CPEI, tadd, Cadd, t and T, which were
considered as the model inputs.

Model inputs must be normalized to avoid numerical overflows
due to very large or very small weights [33,34]. The normalization

Nomenclature

Symbols

b1 biases of input/hidden layer

b2 biases of hidden/output layer

Cadd the concentration of additive

Cf BSA concentration of the feed

Cp BSA concentration of the permeate

CPEI the concentration of PEI casting solution

Fn output of the PWF prediction model

Fp predicted PWF (de-normalized of Fn)

IW connection weights of input/hidden layer

logsig log-sigmoid transfer function

LW connection weights of hidden/output layer

max(ni) maximum value of ni

min(ni) minimum value of ni

ni numerical value of each preparation condition

n̂i normalized value of ni

P model input vector composed of the normalized

value of ni

Q volume of the permeate pure water (m3)

Rp predicted RR (output of the RR prediction model)

S effective area of the membrane (m2)

t evaporation time

T temperature of the water coagulation bath

tansig tan-sigmoid transfer function

tadd the type of additive

tp permeation time (h)

Subscripts

F PWF

R RR
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