Contents lists available at SciVerse ScienceDirect

Journal of the Taiwan Institute of Chemical Engineers

journal homepage: www.elsevier.com/locate/jtice

Journal of the Taiwan Institute of Chemical Engineers and the Annual Engineers

Bioflocculants from isolated strain or mixed culture: Role of phosphate salts and Ca²⁺ ions

Li Wang^{a,b}, Duu-Jong Lee^{a,c,d,*}, Fang Ma^a, Aijie Wang^{a,**}, Nanqi Ren^a

^a State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

^b College of Life Science and Technology, Harbin Normal University, Harbin 150025, China

^c Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

^d Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan

ARTICLE INFO

Article history: Received 17 February 2013 Received in revised form 23 April 2013 Accepted 6 May 2013 Available online 6 June 2013

Keywords: Bioflocculant Aggregation Separation Fermentation Bioprocess monitoring

ABSTRACT

In literature, bioflocculants were produced by pure or mixed cultures with added phosphate salts as pH buffers. Flocculation and sedimentation tests of particulate suspensions with Ca^{2+} ions as co-flocculant were commonly conducted for verifying the efficiency of the produced bioflocculants. However, the validity of these literature works may be questioned since many of the associated experimental works were conducted without enough controls. This study applied a newly isolated strain, *Ochrobactium ciceri* W2, to produce a biopolymer from acid hydrolyzed corn stover with phosphate salts as pH buffer. Sufficient flocculation efficiency of the broth was noted on kaolin suspensions with added Ca^{2+} . Flocculation and sedimentation tests using individual ingredient of the fermenting broth revealed that the corn stover hydrolysate before W2 fermentation and the phosphate buffer alone could sufficiently flocculate the kaolin suspensions. Conversely, the purified biopolymer produced by W2 presented no flocculating activities. Further flocculation tests noted that phosphate buffers and Ca^{2+} could synergetically flocculate the kaolin suspensions. Since most bioflocculant studies in literature dosed high levels of phosphate salts in fermentation and Ca^{2+} in flocculation stages, the efficiency of so-produced bioflocculants may be over-estimated. Revisions on bioflocculant studies with individual ingredient in the applied medium tested are advised.

© 2013 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Bioflocculants produced by microorganisms are regarded environmentally safe in numerous applications including wastewater treatment and downstream processing for food and fermentation industries [1]. Production of bioflocculants using mixed or pure cultures was studied (Table 1). The effective strains studied included *Bacillus* sp., *Halomonas* sp., *Scenedesmus* sp., *Chryseobacterium* sp., *Penicillium* sp., and *Pseudoalteromonas* sp., and the adopted organic substrates were mostly glucose and sucrose [2]. In these tests, high concentrations of phosphates salts $(0.1-5 \text{ g } \text{K}_2\text{HPO}_4 \text{ and } 0.1-2 \text{ g } \text{KH}_2\text{PO}_4)$ were added as pH buffer. The entire fermented broth was generally used as flocculants in the flocculation tests to reduce the production cost.

Efforts were made to isolated and characterize the so-yielded biopolymers in the fermentation tests [3-6]. More *et al.* [7]

** Corresponding author. Tel.: +86 451 86282195; fax: +86 451 86282195. E-mail addresses: djlee@ntu.edu.tw. djleetw@yahoo.com.tw (D.-J. Lee), characterized the biopolymers produced by nine bacterial strains from sludge to flocculate kaolin suspensions. In general, the yielded biopolymer is a mixture of compounds of sugars, proteins and acids. To the authors' best knowledge, there is no comprehensive study on the control on whether the medium before fermentation or other added integrant contributing to the noted flocculation efficiency. Restated, the existing literature results have conducted no proper controls.

A few studies considered the use of hydrolysates from agricultural wastes for bioflocculant production [8–12]. This study aims at (1) using a newly isolated strain, *Ochrobactium ciceri* W2, to produce biopolymer from acid hydrolyzed corn stover and evaluate the flocculation efficiency of the so-yielded broth on kaolin suspensions; (2) examining the flocculation efficiencies of each ingredient in the fermenting broth.

2. Materials and methods

2.1. The hydrolysate and strain

The dried corn stover was collected from Harbin suburb, Heilongjiang province, China. The stover corn was hydrolyzed by

^{*} Corresponding author at: State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. Tel.: +886 2 2362532; fax: +886 2 23623040.

waj0578@hit.edu.cn (A. Wang).

^{1876-1070/\$ -} see front matter © 2013 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jtice.2013.05.001

T	a	b	le	1	

Bioflocculant production studies by isolated strains and mixed cultures.

Authors	Strain	Maximum flocculating activity (%)	Phosphate contents (l^{-1})	$Ca^{2+}(l^{-1})$	Substrate
Deng et al. [17]	Aspergillus mucilaginosus	99.6	5 g K ₂ HPO ₄ + 2 g KH ₂ PO ₄	0 ^e	Glucose
Salehizadeh and Shojaosadati [20]	Bacillus firmus	>85	5 g KH ₂ PO ₄	$5550\text{mg}\text{CaCl}_2$	Glucose
Shih et al. [23]	Bacillus licheniformis	NA ^a	0.5 g K ₂ HPO ₄	150 mg CaCl ₂	Citric acid+glutamic acid+glucose
Deng et al. [24]	Bacillus mucilaginosus	98.1	1 g K ₂ HPO ₄	0^{d}	Glucose
Fujita <i>et al.</i> [25]	Citrobacter sp. TKF04	98.4	$1 \text{ g K}_2 \text{HPO}_4$	0 ^e	Acetate + propionate
Jang et al. [26]	Citrobacter sp. TFK04	NA ^c	1 g K ₂ HPO ₄	50 mg CaCl ₂	Acetic acid
Kim et al. [27]	Citrobacter sp. BL-4	NA ^c	0	500 mg CaCl ₂	Acetate
He et al. [28]	Corynebacterium glutamicum	<70	$0.1 \text{ g KH}_2\text{PO}_4$	575 mg CaCl ₂	Sucrose
Li et al. [29]	Corynebacterium glutamicum	NA ^c	0.1 g KH ₂ PO ₄	No FA tests	Sucrose
He et al. [30]	Corynebacterium glutamicum	NA ^a	$0.1 \text{ g KH}_2 PO_4$	575 mg CaCl ₂	Sucrose + corn steep
	corynebacterium giatamicum	141	0.15 10121 04	<u> </u>	liquor
Lu et al. [32]	Enterobacter aerogenes	NA ^g	5 g KH ₂ PO ₄	0 ^e	Carbohydrates
Prasertsan et al. [33]	Enterobacter cloacae WD7	91	5 g K ₂ HPO ₄ + 2 g KH ₂ PO ₄	4400 mg CaCl ₂	Glucose
Zhang et al. [34]	Nannocystis sp. NU-2	90	2 g K ₂ HPO ₄	0 ^h	Starch
Oh et al. [35]	Paenibacillus sp. AM49	83	0.3 g K ₂ HPO ₄ +0.3 g KH ₂ PO ₄	888 mg CaCl ₂	Glucose
Gong et al. [36]	Paenibacillus polymyxa BY-28	NA	3 g KH ₂ PO ₄	50 mg CaCl ₂	Glucose
Zhang et al. [37]	Sorangium cellulosum	>99	2 g K ₂ HPO ₄	10 ^m	Starch
Elkady et al. [15]	Bacillus mojavensis	96.12 ^f	5 g K ₂ HPO ₄ + 2 g KH ₂ PO ₄ ^f	150 mg CaCl ₂	Glutamic acid
Mabinya et al. [38]	Halomonas sp.	88	5 g K ₂ HPO ₄ + 0.2 g KH ₂ PO ₄	240 mg CaCl ₂	Glucose
Cosa et al. [39]	Virgibacillus sp.	70.4	5 g K ₂ HPO ₄ + 0.2 g KH ₂ PO ₄	300 mg CaCl ₂	Glucose
Kim et al. [40]	Scenedesmus sp.	95	0.3 g K ₂ HPO ₄ +0.3 g KH ₂ PO ₄	944 mg CaCl ₂	Glucose
He et al. [41]	Halomonas sp. V3a'	95	2 g KH ₂ PO ₄ + 5 g K ₂ HPO ₄	500 mg CaCl ₂	Glucose
Zhang et al. [11]	S. cerevisiae	NA	2 g KH ₂ PO ₄	48–648 mg Ca ^{2+ i}	Glucose
Ji et al. [42]	Bacillus licheniformis	99.2	5 g K ₂ HPO ₄ + 2 g KH ₂ PO ₄	999 mg CaCl ₂	NA
Zhang et al. [43]	Proteus mirabilis	>90	5 g K ₂ HPO ₄ + 2 g KH ₂ PO ₄	10000 mg CaCl_2	Glucose
Liu and Cheng [44]	Penicillium sp.	96	5 g K ₂ HPO ₄ + 2 g KH ₂ PO ₄	450 mg CaCl ₂	Glucose
Liu et al. [45]	Chryseobacterium daeguense	96.9	0.3 g K ₂ HPO ₄	0 ^j	Glucose
Wu et al. [46]	Corynebacterium glutamicum	NA ^a	0.1 g KH ₂ PO ₄	582 mg CaCl ₂	Glucose
Li et al. [47]	Agrobacterium sp.	NA	5 g K ₂ HPO ₄	820 mg CaCl ₂	Surcose
Yang et al. [1]	Paenibacillus polymyxa	>98 ^b	$5 \text{ g } \text{K}_2 \text{HPO}_4 + 2 \text{ g } \text{KH}_2 \text{PO}_4$	27 mg CaCl ₂	Surcose
Li et al. [14]	Bacillus licheniformis	97.9	$5 \text{ g } \text{K}_2 \text{HPO}_4 + 2 \text{ g } \text{KH}_2 \text{PO}_4$	500 mg CaCl ₂	Glucose
Li et al. [48]	Pseudoalteromonas sp.	NA ^a	1gNa ₂ HPO ₄ +0.3 g KH ₂ PO ₄	1110 mg CaCl ₂	Flour
Xia et al. [49]	Proteus mirabilis	93.13	5 g K ₂ HPO ₄ + 2 g KH ₂ PO ₄	0 ^k	Glucose
Gong et al. [50]	Serratia ficaria	95.4	5 g K ₂ HPO4 + 2 g KH2PO4	200 mg CaCl ₂	Glucose
Lian et al. [51]	Bacillus mucilaginosus	>93 ¹	2 g Na ₂ HPO ₄	NA	Sucrose
You et al. [52]	Bacillus subtilis	>97	$5 \text{ g } \text{K}_2 \text{HPO}_4 + 2 \text{ g } \text{KH}_2 \text{PO}_4$	150 mg CaCl ₂	Glucose
Zhao et al. [2]	Mixed culture	97.35	0.5 g K ₂ HPO ₄ +5 g KH ₂ PO ₄	150 mg CaCl ₂	Synthetic + fermentation liquor
More et al. [7]	Bacillus sp. 7	>80%	Sludge supernatant	150 mg Ca ²⁺	Sludge as substrate
Wang <i>et al.</i> [13]	Ochrobactrum ciceri	94	5 g K_2 HPO ₄ + 2 g KH ₂ PO ₄	150 mg Ca(OH) ₂	Corn stover hydrolysate
Shu and Hsu [12]	Schizophyllum commune	NA	1.5 g KH ₂ PO ₄	Ca(OH) ₂ added to adjust pH	Detoxified rice hall hydrolysate
Elkady et al. [15]	Bacillus mojavensis	96.11	$5 \text{ g } \text{K}_2 \text{HPO}_4$	150 mg CaCl ₂	Glutamic acid
Feng and Xu [16]	Bacillus sp. BF3-3	98.1	$0.5 \text{ g KH}_2\text{PO}_4$	58.8 mg Ca^{2+}	Glucose
Nwodo <i>et al.</i> [53]	Streptomyces sp.	98.1 87	$5 \text{ g K}_2 \text{HPO}_4 + 2 \text{ g KH}_2 \text{PO}_4$	300 mg CaCl ₂	Glucose
110000 et ul. [33]	succession sp.	07	Jg K2HFU4+2g KH2PU4	Soo mg CaCi ₂	GIULUSE

^aDifferent definition in flocculating activity reported.

^b Dual conditioning with 121 mg/l PACl and 99.75 mg/l biopolymer.

^c No flocculating activity data were reported.

^d 500 mg/l MgSO₄·7H₂O was added in fermentation broth.

^e $200 \text{ mg/l MgSO}_4 \cdot 7 \text{H}_2 \text{O}$ was added in fermentation broth.

^f Phosphate salts were removed from biopolymer, and flocculating activity was measured with purified biopolymer with no ion dosage was *ca*. 50%.

^g Sedimentation rates were reported.

^h 30 mg/l of FeCl₃ provided 90% flocculating activity.

ⁱ Presented in the recycled wastewater for flocculation.

^j Adding ions reduced flocculating activities.

^k Adding Mg²⁺ ions to increase flocculating activities.

¹ Depending on the type of wastewaters to be treated.

^m Adding in fermentation broth.

diluted 1.7% (w/w) sulfuric acid with solid–liquid ratio 1:10 at 121 °C for 120 min. The lignocellulosic material was hydrolyzed and the produced reducing sugar measured by dinitrosalicylic acid (DNS) method (Miller, 1959). After hydrolysis the supernatant was collected at 9000 × g centrifugation and was mixed with sufficient Ca(OH)₂ to neutralize pH. The so-yielded precipitates were removed by centrifugation. The yielded hydrolysate was used in subsequent tests.

The strain was isolated in Wang *et al.* [13] which was from activated sludge sample collected at a wastewater treatment plant

at Harbin, China. The strain was isolated by agar plate technique and was identified using PCR-DGGE technique as *O. ciceri* W2.

2.2. Bioflocculant production and flocculating activity tests

The isolates in Section 2.1 were individually cultivated in 250 ml flask containing cultivation medium of composition (per liter): 230 ml hydrolysate, 5 g K₂HPO₄, 2 g KH₂PO₄, 0.2 g MgSO₄, 0.1 g NaCl, 0.5 g urea and 0.5 g yeast extract at pH 7.5 and 30 °C.

Download English Version:

https://daneshyari.com/en/article/691392

Download Persian Version:

https://daneshyari.com/article/691392

Daneshyari.com